Introductory Linux Tutorial
for Life Sciences

Session 9: Introduction to shell scripting 1

Basics

In this session

e Motivation for shell scripting.
e What a script is and how to create one.

e Basic shell scripts.
o Variables (creating and using them).
o Command substitution (i.e. getting output from a command).
o Quoting (it matters).
o Command line arguments (how to inspect the arguments given to a script).
o Arithmetics.

o Reading strings into variables (from a user or file).

Daily work at the Unix command prompt

e Bioinformatics work often involves a great deal of data processing tasks.
e Data processing may include running a number of sequential command to, for
example,
o extract data from files based on various conditions, or
o combine data in various ways by merging or joining files, or
o reformat or otherwise modify the contents of files.
e These processing steps are often the same for a set of files, and may often have to

be re-run several times within the course of a single project (for whatever
reasons).

Daily work at the Unix command prompt

e Typing commands at the command prompt is error prone and tedious.

® Processing pipelines can be formulated to take inputs and to produce outputs.

e Workflows can often be formalised, generalised, and arranged into robust and
reproducible pipelines.

Daily work at the Unix command prompt

® On a Unix system, a shell script can be seen as a way of “recording the steps for
doing a set of operations/running a pipeline, and later replay them.”

e Benefits:
o Encapsulates the operation needed to perform a task.
o Provides a record of what was actually done.

o Easy to modify to cope with new circumstances.

e A shell script becomes “a new command” that you may use to do something

specific.

Shell scripting

e The command prompt is actually provided by a command called “the shell”.

e Unix systems often provide several different shells, each with its own
specializations and extensions.

e The most basic shell is the “sh” shell.

o Its syntax and behaviour is specified by “the POSIX standard”.

o Other shells are often compatible with it, but may provide extensions to it.
e The most common shell on Linux systems is bash.

e Alternative shells include zsh, ksh and others.

Shell scripting

e The shell can be told to run a shell script.

e A shell script is a set of commands.

e Useful for simple tasks or for gluing other tasks together.

e Does not replace knowledge of other programming languages.

e Lacks support for
o floating point arithmetics,
o most common data structures, and

o fine-grained manipulation of strings etc.

The shell script

e A shell script is a plain text file that is read and executed by the shell.

e Anything that you can do at the command line can be done in a shell script, and it
will behave the same (given the same environment).

® A scriptis created or modified with any plain text editor

O nano
O emacs
O vim

e Scripts can have any filename, but are often given short names and a “sh” filename

suffix.

A “Hello World” script

#!/bin/bash e The first line always starts with “#!” followed
by the pathname of the shell executable to
echo "Hello World" use for running the script.

e In this case, the script is executed using

/bin/bash (the bash shell).

o The rest of the file consists of commands
that the shell should run.

e This script will just print out the string
“Hello World” in the terminal using “echo”.

e When a script is done, control is given back
to the user and a new prompt is shown.

Running our “Hello World” script

S chmod +x hello-world.sh

S ./hello-world.sh
Hello World

S bash ./hello-world.sh
Hello World

The “chmod +x” command makes the script
(which is a text file) executable.

o You only have to do this once for a script.

This means that if you try to run the script,
the shell will

o Investigate the “#!”-line.
o Call the command mentioned there.
o Pass it the script for running.

A script can be run using “an explicit
interpreter” (as show last to the left).

o This requires you to know that the script is
actually a bash script, and not a Python or
zsh script (which would cause issues).

Writing a script

e Go to where you want to create the script. e Save the script.
o c¢d ~/myLinuxProject/scripts e Make the script executable.
e Open a text editor. o chmod +x my-script.sh
o emacs my-script.sh e Run the script.
o nano my-script.sh o ./my-script.sh
o vim my-script.sh e See the result

e Write the script. o This script was written by me

o #!/bin/bash
echo "This script was written by me"

Shell scripting: Variables

e Shell variables allow for storing information during the duration of the shell

script.
e The data stored in a shell variable is a string.

e A string can represent a number, a set of words, a pathname, a timestamp, or any
other text.

e Some shells provides array variables (bash does, for example).

® All created variables disappear when the script terminates.

Shell scripting: Variables, syntax

e Variables are created by assigning a value to them:

o variable_name="value"
«@__»

e No space is allowed around the “=” in an assignment.

e Variable names may start with a letter or an underscore, and the name may
otherwise consist of letters, digits, and underscores.

e Variable names are case sensitive.

e A user’s shell variables should not be all upper-case.

o Upper-case variable names are by convention reserved for environment (“system”) variables.

Shell scripting: Variables, expansion

e To get a variable’s value, prefix the variable’s name with “$”:

o echo "Smy_variable"

o subject="Hello dear SUSER"

e Getting a variable’s value is called “expanding the variable”.

e In the second example above, the variable “USER” is expanded as part of
constructing a new value for the variable “subject”.

e (The “USER” variable is usually set by the shell to the username of the current

user.)

A modified “Hello World” script

#!/bin/bash

This script prints a message
and lists the files visible in
the current directory.

message="Hello World"
echo "Smessage"

echo "These are your files:"
ls -1

The script says when to do what and how.

The script may contain variables (you could
use variables on the command line too,
obviously).

Commands are executed sequentially.

Execution is not halted if there are errors.

o You may want to use “set -e” and “set -u” to
have your scripts terminate immediately
upon error, or when an undefined variable is
accessed.

o #!/bin/bash -eu

Variables: Trimming values

${variable#pattern} remove shortest prefix
matching “pattern”

${variable##pattern] = remove longest prefix
matching “pattern”

${variable%pattern} remove shortest suffix
p
matching “pattern”

${variable% % pattern] remove longest suffix
p g
matching “pattern”

This shows how, given some variable, one
may trim off a prefix or suffix from the value
of that variable using a globbing pattern.

Example:
o name="01-file-A.txt"

o echo "${name#01-1" # prints "file-A.txt"
echo "${name#*-1" # prints "file-A.txt"
echo "${name##*-1" # prints "A.txt"

o echo "$name%.txt]" # prints "01-file-A"
echo "${name%-*1" # prints "01-file"
echo "${name% %-*}" # prints "01"

Shell scripting: Command substitution

e A “‘command substitution” can be used to insert the output of a command in a
string.
e The syntax is “$(...)".

o script_path="SHOME/myLinuxProject/my-script.sh"
script_name="S(basename "Sscript_path")"
echo "The name of the script is Sscript_name"

e $HOME will always expand to your home directory.

e The “~” (tilde) character is a shorter way of writing $HOME, but it’s most
commonly used on the command line, not in scripts, and does not behave like a
variable, e.g. does not expand within quotes.

Shell scripting: Quoting, word-splitting + globbing

An unquoted expansion (variable expansion, arithmetic expansion, or command
substitution etc.) will undergo

o word-splitting on whitespace characters (spaces, tabs, and newlines by default), which generates
separate words from the variable’s value, and

o each generated word will undergo filename generation (“globbing”), which may expand the list
with matched filenames.

Example:

o var="hello * world"
echo Svar

o hello myfile-1 myfile-2 myfile-3 myfile-4 myfile-5 world

Shell scripting: Quoting, avoiding split + glob

e Double quoting the expansion inhibits word-splitting and filename-generation.

e Example

o var="hello * world"
echo "Svar"

o hello * world

e An expansion is quoted as soon as it occurs somewhere in a quoted string.
The quotation marks do not have to be tightly around the expansion.

o echo "The variable's value is Svar" # Svar is quoted there

Shell scripting: Quoting, always double quote

e Always double quote variable expansions and command substitutions.

o There are instances where quoting is not needed, but it’s much easier to remember to always quote

expansions.

o It’s very rare to want to avoid double quoting expansions, and it’s often an error or a source of

future errors to not use double quotes around expansion.
o C I It to fa t that fil tai (or “*”, “?”, etc.)
ommon issue: It is very common to forget that filenames may contain spaces (or “*”, “?”, etc.

m mv "Sfile" "Sdestdir" # double quote to avoid issues

e Single quotes inhibit all expansions.

o echo 'SUSER SHOME'
o Will print the literal string §USER $HOME

Shell scripting: Comments

#!/bin/bash -eu e Comments are introduced with a hash
character (“#”).

Lists all visible names in the current

directory by means of a globbing

pattern and echo.

e The line from the “#” to the end of the line
will be ignored. The “do the thing” text is
also a comment in this example.

echo ./+* # do the thing e Comments are often used to describe what
the script does.

e This example also shows the use of a
filename globbing pattern. These are often
used in loops (more on this later).

Shell scripting: Command line arguments

e Shell script may take arguments on the command line.

o ./my-script.sh myfile.fa "hello world"

e Within the script, these are available as the “positional parameters” These are

accessed as “$17, “$2”, “$3”, etc. (“$0” usually contains the name of the script
itself).

e The number of such parameters are recorded in the special variable “$#”.

e With the example command above:

o “$1” will be the string “myfile.fa”, “62” will be the string “hello world” (the quotes on the command
line are not included in the variable’s value), and “$#” would be 2.

Shell scripting: Command line arguments

#!/bin/bash

eu

Shows the number of command line
argument, and will also output
the first two arguments.

echo "Got S# arguments”
echo "Argument 1: S$1"
echo "Argument 2: $2"

S ./my-script.sh myfile.fa "1 2 3"
Got 2 arguments

Argument 1: myfile.fa

Argument 2: 1 2 3

e What would this script print if “1 2 3” wasn’t
quoted?

e What would it print if it was only given a
single (or no) argument?

Shell scripting: Arithmetics

The shell can do simple integer arithmetics.

Calculations are done within an “arithmetic expansion” “$((...))”.

The expression inside “$((...))” may use the ordinary arithmetic operators, and
may contain variables. Variables do not need to be prefixed by “$”.

a=17/

b=3

echo "Sa + Sb =
echo "Sa / Sb =

c="$((a*b))"

S((a+b))"
S(Ca/b))"

prints "17 + 3
prints "17 / 3

20"
5“

c gets the value "51"

Shell scripting: Interacting with a user

A shell script can use the command “read” to read data from a user (or from a file,
or from another command; we will see example of this later).

The “read” command reads data from a single line and assigns the words in that
line to one or several variables.

“read” can be made to prompt the user with a custom string using its “-p” option,
and can also be made to hide whatever the user is typing (for e.g. passwords) with

(13 2

its “-s” option. A timeout can be set with “-t n” to “n” seconds. (etc.)

Don’t read pathnames with “read”, it’s easier for the user to just type them on the
command line as arguments to the script (with e.g. tab-completion).

Shell scripting: Interacting with a user

#!/bin/bash -eu

read
read

echo
echo
echo

-p 'Name and age: name age
-s -p 'Secret: ' secret

"Hello Sname"
"You were born ca. $((2019-age)).
"Your secret is safe with me."

This script asks two questions and expects
two lines of input from the user.

The first line is expected to contain at least
two words.

o The first word will be read into “name” and
the second (and any other words) will be
read into “age”.

No text will show when the “secret word” is
typed in by the user.

Exercises

e [f appropriate, find a partner to work with.

e The aim of the exercises is to transfer some of the shown commands and concepts
into simple shell scripts.

e The exercises may be found in the E-learning platform page for this course as
“Exercises session 9.

