
Introductory Linux Tutorial
for Life Sciences

Session 9: Introduction to shell scripting 1

Basics

In this session
● Motivation for shell scripting.

● What a script is and how to create one.

● Basic shell scripts.

○ Variables (creating and using them).

○ Command substitution (i.e. getting output from a command).

○ Quoting (it matters).

○ Command line arguments (how to inspect the arguments given to a script).

○ Arithmetics.

○ Reading strings into variables (from a user or file).

Daily work at the Unix command prompt
● Bioinformatics work often involves a great deal of data processing tasks.

● Data processing may include running a number of sequential command to, for

example,

○ extract data from files based on various conditions, or

○ combine data in various ways by merging or joining files, or

○ reformat or otherwise modify the contents of files.

● These processing steps are often the same for a set of files, and may often have to

be re-run several times within the course of a single project (for whatever

reasons).

Daily work at the Unix command prompt
● Typing commands at the command prompt is error prone and tedious.

● Processing pipelines can be formulated to take inputs and to produce outputs.

● Workflows can often be formalised, generalised, and arranged into robust and

reproducible pipelines.

Daily work at the Unix command prompt
● On a Unix system, a shell script can be seen as a way of “recording the steps for

doing a set of operations/running a pipeline, and later replay them.”

● Benefits:

○ Encapsulates the operation needed to perform a task.

○ Provides a record of what was actually done.

○ Easy to modify to cope with new circumstances.

● A shell script becomes “a new command” that you may use to do something

specific.

Shell scripting
● The command prompt is actually provided by a command called “the shell”.

● Unix systems often provide several different shells, each with its own

specializations and extensions.

● The most basic shell is the “sh” shell.

○ Its syntax and behaviour is specified by “the POSIX standard”.

○ Other shells are often compatible with it, but may provide extensions to it.

● The most common shell on Linux systems is bash.

● Alternative shells include zsh, ksh and others.

Shell scripting
● The shell can be told to run a shell script.

● A shell script is a set of commands.

● Useful for simple tasks or for gluing other tasks together.

● Does not replace knowledge of other programming languages.

● Lacks support for

○ floating point arithmetics,

○ most common data structures, and

○ fine-grained manipulation of strings etc.

The shell script
● A shell script is a plain text file that is read and executed by the shell.

● Anything that you can do at the command line can be done in a shell script, and it

will behave the same (given the same environment).

● A script is created or modified with any plain text editor

○ nano

○ emacs

○ vim

● Scripts can have any filename, but are often given short names and a “.sh” filename

suffix.

A “Hello World” script
#!/bin/bash

echo "Hello World"

● The first line always starts with “#!” followed

by the pathname of the shell executable to

use for running the script.

● In this case, the script is executed using

/bin/bash (the bash shell).

● The rest of the file consists of commands

that the shell should run.

● This script will just print out the string

“Hello World” in the terminal using “echo”.

● When a script is done, control is given back

to the user and a new prompt is shown.

Running our “Hello World” script
$ chmod +x hello-world.sh

$./hello-world.sh
Hello World

$ bash ./hello-world.sh
Hello World

● The “chmod +x” command makes the script

(which is a text file) executable.

○ You only have to do this once for a script.

● This means that if you try to run the script,

the shell will

○ Investigate the “#!”-line.

○ Call the command mentioned there.

○ Pass it the script for running.

● A script can be run using “an explicit

interpreter” (as show last to the left).

○ This requires you to know that the script is

actually a bash script, and not a Python or

zsh script (which would cause issues).

Writing a script
● Go to where you want to create the script.

○ cd ~/myLinuxProject/scripts

● Open a text editor.

○ emacs my-script.sh

○ nano my-script.sh

○ vim my-script.sh

● Write the script.

○ #!/bin/bash
echo "This script was written by me"

● Save the script.

● Make the script executable.

○ chmod +x my-script.sh

● Run the script.

○ ./my-script.sh

● See the result

○ This script was written by me

Shell scripting: Variables
● Shell variables allow for storing information during the duration of the shell

script.

● The data stored in a shell variable is a string.

● A string can represent a number, a set of words, a pathname, a timestamp, or any

other text.

● Some shells provides array variables (bash does, for example).

● All created variables disappear when the script terminates.

Shell scripting: Variables, syntax
● Variables are created by assigning a value to them:

○ variable_name="value"

● No space is allowed around the “=” in an assignment.

● Variable names may start with a letter or an underscore, and the name may

otherwise consist of letters, digits, and underscores.

● Variable names are case sensitive.

● A user’s shell variables should not be all upper-case.

○ Upper-case variable names are by convention reserved for environment (“system”) variables.

Shell scripting: Variables, expansion
● To get a variable’s value, prefix the variable’s name with “$”:

○ echo "$my_variable"

○ subject="Hello dear $USER"

● Getting a variable’s value is called “expanding the variable”.

● In the second example above, the variable “USER” is expanded as part of

constructing a new value for the variable “subject”.

● (The “USER” variable is usually set by the shell to the username of the current

user.)

A modified “Hello World” script
#!/bin/bash

This script prints a message
and lists the files visible in
the current directory.

message="Hello World"
echo "$message"

echo "These are your files:"
ls -l

● The script says when to do what and how.

● The script may contain variables (you could

use variables on the command line too,

obviously).

● Commands are executed sequentially.

● Execution is not halted if there are errors.

○ You may want to use “set -e” and “set -u” to

have your scripts terminate immediately

upon error, or when an undefined variable is

accessed.

○ #!/bin/bash -eu

Variables: Trimming values
${variable#pattern} remove shortest prefix

matching “pattern”

${variable##pattern} remove longest prefix

matching “pattern”

${variable%pattern} remove shortest suffix

matching “pattern”

${variable%%pattern} remove longest suffix

matching “pattern”

● This shows how, given some variable, one

may trim off a prefix or suffix from the value

of that variable using a globbing pattern.

● Example:

○ name="01-file-A.txt"

○ echo "${name#01-}" # prints "file-A.txt"

echo "${name#*-}" # prints "file-A.txt"

echo "${name##*-}" # prints "A.txt"

○ echo "$name%.txt}" # prints "01-file-A"

echo "${name%-*}" # prints "01-file"

echo "${name%%-*}" # prints "01"

Shell scripting: Command substitution
● A “command substitution” can be used to insert the output of a command in a

string.

● The syntax is “$(...)”.

○ script_path="$HOME/myLinuxProject/my-script.sh"
script_name="$(basename "$script_path")"
echo "The name of the script is $script_name"

● $HOME will always expand to your home directory.

● The “~” (tilde) character is a shorter way of writing $HOME, but it’s most

commonly used on the command line, not in scripts, and does not behave like a

variable, e.g. does not expand within quotes.

Shell scripting: Quoting, word-splitting + globbing
● An unquoted expansion (variable expansion, arithmetic expansion, or command

substitution etc.) will undergo

○ word-splitting on whitespace characters (spaces, tabs, and newlines by default), which generates

separate words from the variable’s value, and

○ each generated word will undergo filename generation (“globbing”), which may expand the list

with matched filenames.

● Example:

○ var="hello * world"
echo $var

○ hello myfile-1 myfile-2 myfile-3 myfile-4 myfile-5 world

Shell scripting: Quoting, avoiding split + glob
● Double quoting the expansion inhibits word-splitting and filename-generation.

● Example

○ var="hello * world"
echo "$var"

○ hello * world

● An expansion is quoted as soon as it occurs somewhere in a quoted string.

The quotation marks do not have to be tightly around the expansion.

○ echo "The variable's value is $var" # $var is quoted there

Shell scripting: Quoting, always double quote
● Always double quote variable expansions and command substitutions.

○ There are instances where quoting is not needed, but it’s much easier to remember to always quote

expansions.

○ It’s very rare to want to avoid double quoting expansions, and it’s often an error or a source of

future errors to not use double quotes around expansion.

○ Common issue: It is very common to forget that filenames may contain spaces (or “*”, “?”, etc.)

■ mv "$file" "$destdir" # double quote to avoid issues

● Single quotes inhibit all expansions.

○ echo '$USER $HOME'

○ Will print the literal string $USER $HOME

Shell scripting: Comments
#!/bin/bash -eu

Lists all visible names in the current
directory by means of a globbing
pattern and echo.

echo ./* # do the thing

● Comments are introduced with a hash

character (“#”).

● The line from the “#” to the end of the line

will be ignored. The “do the thing” text is

also a comment in this example.

● Comments are often used to describe what

the script does.

● This example also shows the use of a

filename globbing pattern. These are often

used in loops (more on this later).

Shell scripting: Command line arguments
● Shell script may take arguments on the command line.

○ ./my-script.sh myfile.fa "hello world"

● Within the script, these are available as the “positional parameters”. These are

accessed as “$1”, “$2”, “$3”, etc. (“$0” usually contains the name of the script

itself).

● The number of such parameters are recorded in the special variable “$#”.

● With the example command above:

○ “$1” will be the string “myfile.fa”, “$2” will be the string “hello world” (the quotes on the command

line are not included in the variable’s value), and “$#” would be 2.

Shell scripting: Command line arguments
#!/bin/bash -eu

Shows the number of command line
argument, and will also output
the first two arguments.

echo "Got $# arguments"
echo "Argument 1: $1"
echo "Argument 2: $2"

$./my-script.sh myfile.fa "1 2 3"
Got 2 arguments
Argument 1: myfile.fa
Argument 2: 1 2 3

● What would this script print if “1 2 3” wasn’t

quoted?

● What would it print if it was only given a

single (or no) argument?

Shell scripting: Arithmetics
● The shell can do simple integer arithmetics.

● Calculations are done within an “arithmetic expansion”: “$((…))”.

● The expression inside “$((…))” may use the ordinary arithmetic operators, and

may contain variables. Variables do not need to be prefixed by “$”.

● a=17
b=3
echo "$a + $b = $((a + b))" # prints "17 + 3 = 20"
echo "$a / $b = $((a / b))" # prints "17 / 3 = 5"
c="$((a * b))" # c gets the value "51"

Shell scripting: Interacting with a user
● A shell script can use the command “read” to read data from a user (or from a file,

or from another command; we will see example of this later).

● The “read” command reads data from a single line and assigns the words in that

line to one or several variables.

● “read” can be made to prompt the user with a custom string using its “-p” option,

and can also be made to hide whatever the user is typing (for e.g. passwords) with

its “-s” option. A timeout can be set with “-t n” to “n” seconds. (etc.)

● Don’t read pathnames with “read”, it’s easier for the user to just type them on the

command line as arguments to the script (with e.g. tab-completion).

Shell scripting: Interacting with a user
#!/bin/bash -eu

read -p 'Name and age: ' name age
read -s -p 'Secret: ' secret

echo "Hello $name"
echo "You were born ca. $((2019-age))."
echo "Your secret is safe with me."

● This script asks two questions and expects

two lines of input from the user.

● The first line is expected to contain at least

two words.

○ The first word will be read into “name” and

the second (and any other words) will be

read into “age”.

● No text will show when the “secret word” is

typed in by the user.

Exercises
● If appropriate, find a partner to work with.

● The aim of the exercises is to transfer some of the shown commands and concepts

into simple shell scripts.

● The exercises may be found in the E-learning platform page for this course as

“Exercises session 9”.

