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Assembly is the computational reconstruction of a longer sequence from

smaller sequence reads

Which method should | choose that will produce the highest-quality assembly with
the data that | have?




Why do we want to sequence metagenomes?

Important for understanding the biology and functional potential of hard-to-culture
microorganisms

Metagenomic recovery of complete or draft microbial genomes is a starting point to analyze the
“taxon-specific” potential of organisms within their community and ecosystem context

Recovering Population Genomes from
Metagenomic Data

metagenome contigs

reads
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bin contigs into genomes

(genome-centric metagenomics) Donovan Parks, AUS_tra"an
school of ecogenomics




There are two approaches for sequence assembly

de novo assembly:
Reconstructing a DNA sequence with no prior knowledge of the sequence

Assembly with reference sequences:
Mapping sequence reads using a reference sequence

de novo assembly Assembly with reference

Reference genome

Assembled genome -
|

Assembled genome




How do we perform sequence assembly of single genomes?

Challenge if you don’t know what the genome should look like




We have few ways to distinguish true insight from wrongly assembled

genome sequence

What is real, what is missing, and what is experimental artifact?




How do we perform sequence assembly of metagenomes?

Even more challenging for metagenomes




How do we perform sequence assembly of metagenomes?

Diverse samples — more challenging as it is not possible to sequence the complete
DNA




Some definitions of terms

Contig  =Consensus sequence of overlapping sequence reads
Scaffold = Contigs joined together using read-pair information

Gap = Regions of the original DNA sequence that are not covered
Repeats =ldentical regions of DNA

—Ep___ Repeat B

Read-pair
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Scaffold



10

Some definitions of terms

Contig  =Consensus sequence of overlapping sequence reads
Scaffold =Contigs joined together using read-pair information

Gap = Regions of the original DNA sequence that are not covered
Repeats =Identical regions of DNA

Coverage =The average number of reads that cover each base

— I Coverage

—Ep___ Repeat

Number of reads (n) x Length of reads (1)
Length of metagenome (L)




Some assembly challenges

Uncovered regions
Noise in the data (2-2% of the bases are wrong)

Sequence repeats (bacterial genomes ~5%, mammals ~50%)

Low sequence Sequencing
coverage error

—Ep___ Repeat B

—m/%llse overlap
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Merge overlapping paired-end reads prior to assembly

Generate longer reads by overlapping and merging read pairs before assembling a

sequence
Total contig size (Mb) 2.01 2.94
Contig N5o size (kb) 1.45 8.40
Contig maximum (kb) 8.18 36.07
Scaffold N5o (kb) 2.07 8.80
Scaffold maximum (kb) 11.23 36.07

Mago¢ and Salzberg, Bioinformatics. 2011 Nov 1; 27(21): 2957-2963.



Short-read sequencing technologies have made the computational

challenge harder

Highly memory-intensive task (TB) and storage demanding (TB)

45 GB of raw sequencing data for 32 X coverage of a human genome (three Illumina HiSeq2500 runs)

FIOOOResearch

Open for Science

Ten steps to get started in Genome Assembly and
Annotation [version 1; referees: awaiting peer review]

Victoria Dominguez Del Angel ([f), Erik Hjerde (%) 2, Lieven Sterck (f&) 34,
9

Salvadors Capella-Gutierrez>$, Cederic Notredame’#®, Olga Vinnere Pettersson®,
Joelle Amselem (ff) '°, Laurent Bouri (f%) !, Stephanie Bocs (f8) "', Christophe Klopp () %,
Jean-Francois Gibrat (&) 15, Anna Vlasova ([2), Brane L. Leskosek', Lucile Soler'”, Mahesh Binzer-

Panchal @‘7, 2= Henrik Lantz @17

Lessons learned from implementing a national
infrastructure in Sweden for storage and analysis of
next-generation sequencing data

Samuel Lampa, Martin Dahlg, Pall | Olason, Jonas Hagberg and Ola Spjuth &

13 GigaScience 2013 2:9 | DOI: 10.1186/2047-217%-2-9 | © Lampa et al,; licensee BioMed Central Ltd. 2013



Some computational considerations




Some questions you should ask before you start genome sequencing

What is the purpose of sequencing the metagenome?

Complete sequence (Base-perfect sequencing)
Draft sequence

How much data (and what technology) do you need?
Access to computational resources?
Plan for analyses?

Number Number of reads x Length of read
of reads Coverage Covera ge =

Length of genome Length of genome
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Graph-based assembly methods

Greedy graph assembly (greedy extension, or extension-based)
Overlap-Layout-Consensus assembly (OLC)
De Bruijn graph assembly (DBG)

Greedy Assembler Overlap-Layout-Consensus De-Bruijn Graph
Find pairwise overlaps between all the eads 4-mers
Iterative merge contigs with - mup: s me
maximum overlap R1: AATGCATTCAGAT
R1: ATAACGAATA R2:TAACGAATAG AATG
Reads Contigs R3: AACGAATAGA R4: ACGAATAGAC ATGC

RS: CGAATAGACT R6: GAATAGACTA TGCA
GCAT

OverlapGraph | .

’ 0 R2: AATGCATAGG
o © |ccToe| =
O

GCAT
Merge reads intocontigsusing | 0 ...
consensus and extend contigs
e using mate-pairs . Shared k-mers O Unique k-mers
- ) c ) ATAACGAATA Graph and
TAACGAATAG
AACGAATAGA Eulerian walk
Aligned ACGAATAGAC
reads CGAATAGACT
L GAATAGACTA

Consensus contig ATAACGAATAGACTA

contig 1 contig 2
\ ; C ) Contigs Generated from Walk
AATTCGAATT

16 Xg! oot okseecats | e

.....AATGCTCCGTAGAACTAA....




de bruijn graph assembly

'Bridges of Konigsberg problem’ - Leonhard Eulerin 1735

Seven bridges joined the four parts of the city located on opposing banks of the Pregel River and
two river islands.

Could every part of the city could be visited by walking across each of the seven bridges exactly
once and returning to one's starting location?

Compeau, Nature Biotechnology 29 (2011)
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de bruijn graph assembly

'Bridges of Konigsberg problem’ - Leonhard Euler in 1735
Euler represented each landmass as a point (called a node) and each bridge as a line segment
(called an edge) connecting two points.
This creates a graph—a network of nodes connected by edges

Algorithm determining whether an arbitrary graph contains a path that visits every edge exactly
once and returns to where it started

Seeal - ££3 = () TR - 2 TYQ - - e Lor
\J ¢ X )
h 4] > b =TI /

Compeau, Nature Biotechnology 29 (2011)
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de bruijn graph assembly

'Bridges of Konigsberg problem’ - Leonhard Euler in 1735
Euler represented each landmass as a point (called a node) and each bridge as a line segment
(called an edge) connecting two points.
This creates a graph—a network of nodes connected by edges

Algorithm determining whether an arbitrary graph contains a path that visits every edge exactly
once and returns to where it started
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Compeau, Nature Biotechnology 29 (2011)




de bruijn graph are used by most modern de novo assemblers

Creates a sorted table of all sub-sequences (words) found in the reads
The words are relatively short, e.g. about 20 (20 mers)

Given any word in the table, it will look up potential neighbouring words
The algorithm tries to make a graph (Eulerian path) connecting all words

sequence ATGGAAGTCGCGGAATC

ATGGAAG Construct a de Bruijn graph (DBG)
— Nodes = one for each unique k-mer
7mers TGGAAGT — Edges = k-1 exact overlap between two nodes

AAGTCGC Graph simplification
AGT

— Merge chains, remove bubbles and Rps

GA
CGCGGAA Find a Eulerian path through the graph
GGAAT
CGGAATC

de Bruijn graph

| ATGGAAG [ TGGAAGT [ GGAAGTC || GAAGTCG [—{ AAGTCGC | AGTCGCG )_‘

20 L 5| GTCGCGG [ TCGCGGA [ CGCGGAA || GCGGAAT [ CGGAATC
homes.cs.washington.edu




de bruijn graph are used by most modern de novo assemblers

SNPs or a sequencing errors will create so-called bubbles
For sequencing errors the deviating word occurs only once
For heterozygous SNPs both paths represented more or less equally

sequence ATGGAAGTCGCGGAATC TCGCGGA
CGCGGAT
* GCGGATT
Shortread 5 - TCGCGGATTC CGGATTC

[ ATGGAAG [ TGGAAGT [ GGAAGTC | GAAGTCG | AAGTCGC | AGTCGCG }_‘

L] GTCGCGG || TCGCGGA || CGCGGAA || GCGGAAT || CGGAATC |

CGCGGAT [ GCGGATT || CGGATTC |

O—0—0=0=0—0—0-Q-0~-0—0
N p——

homes.cs.washington.edu
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de bruijn graph are used by most modern de novo assemblers

It will continue to add words — build coverage of the assembly

sequence ATGGAAGTCGCGGAATC

| ATGGAAG || TGGAAGT [—»| GGAAGTC [—»| GAAGTCG [—| AAGTCGC | AGTCGCG )_‘

L[ GTCGCGG [ TCGCGGA [ CGCGGAA [ GCGGAAT [ CGGAATC |

Shortread 1 - ATGGAAGTCG
Shortread 2 - GTCGCGGAAT
Shortread 3 - TCGCGGAATC
Shortread 4 - TGGAAGTCGC
Shortread 5* - TCGCGGATTC

1\/\\f\/\/\/\//\/ 3*/\3\//\/\/\/\/\/
22 4 :
homes.cs.washington.edu




de bruijn graph are used by most modern de novo assemblers

Repeats are the most difficult problem for the de novo assembly
Impossible to resolve if the repeat is longer than the paired distance of read pairs
Such repeats will cause the assembler to spit the graph — make contigs

ACTGGAA

y
CTGGAAG

TATGGAA — ATGGAAG —» TGGAAGT —| GGAAGTC —» GAAGTCG

GGAAGTG

Y
GAAGTGA

23 :
homes.cs.washington.edu




Many assemblers produce an assembly graph in FASTG format (G=graph)

Unlike FASTA (linear representation), FASTG can express branching arising from eg.
ambiguities and repetitive segments

FASTA forces assemblers to make mistakes

« Strictly linear nature forces assemblers to introduce errors:

ACATT A TACTG
Assembler forced to pick Aor T

FASTG encodes all ambiguities

« FASTG natively encodes ambiguities that are lost in FASTA

A
V|
[ ] [ ]

T

Uncertain base or SNP

ACATT

TACTG

TACTG

ACATT A[l:a1t|A,T]
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FASTG can easily be converted to FASTA

FASTG and derived FASTA files share the same base co-ordinate system

FASTA + Markup will produce the original FASTG

FASTG

>contig1;

TACCGCNNNN[4:gap:size=(4,3..5) ]JAGCCTGCC
GTTATAC[l:alt:allele|C,G]TCCCTGGATACGTT
TAGGATATAT[ 6:tandem:size=(3,2..5)|AT]CC

Assembly graph

Genome

—

Long imperfect

Single base
difference

Uncertain tandem
repeat

FASTA

>contig1
TACCGCNNNNAGCCTGCC
GTTATACCTCCCTGGATA
CGTTTAGGATATATCC

—
~ g—

+
Markup

>contig1;

6 [4:gap:size=(4,3..5)]

26 [l:alt:allele|C,G]

52 [6:tandem:size=(3,2..5)|AT]

lain MacCallum, David B. Jaffe



Metagenome assembly tools

Megahit
MetaSPAdes
Snowball
MetaVelvet
Ray Meta
MetAMOS

{1}

Andreas Bremges
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Metagenome assembly tools - performance

CAMI - challenge the developers to benchmark their programs

Highly complex and realistic data sets
~700 newly sequenced microorganisms
~600 novel viruses and plasmids
Assembly and genome binning
Taxonomic profiling and binning

nature methods

Critical Assessment of Metagenome
Interpretation—a benchmark of
metagenomics software

Alexander Sczyrba , Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes
Droge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas Bremges, Adrian Fritz,
Ruben Garrido-Oter, Tue Sparholt Jargensen, Nicole Shapiro, Philip D Blood, Alexey Gurevich, Yang
Bai, Dmitrij Turaev, Matthew Z DeMaere, Rayan Chikhi, Niranjan Nagarajan, Christopher Quince,
Fernando Meyer, Monika Balvoc€iaté, Lars Hestbjerg Hansen, Sgren J Sgrensen, Burton K H Chia,
Bertrand Denis, Jeff L Froula, Zhong Wang, Robert Egan, Dongwan Don Kang, Jeffrey J Cook, Charles
Deltel, Michael Beckstette, Claire Lemaitre, Pierre Peterlongo, Guillaume Rizk, Dominique Lavenier,
Yu-Wei Wu, Steven W Singer, Chirag Jain, Marc Strous, Heiner Klingenberg, Peter Meinicke, Michael D
Barton, Thomas Lingner, Hsin-Hung Lin, Yu-Chieh Liao, Genivaldo Gueiros Z Silva, Daniel A Cuevas,
Robert A Edwards, Surya Saha, Vitor C Piro, Bernhard Y Renard, Mihai Pop, Hans-Peter Klenk, Markus
Goker, Nikos C Kyrpides, Tanja Woyke, Julia A Vorholt, Paul Schulze-Lefert, Edward M Rubin, Aaron E
Darling, Thomas Rattei & Alice C McHardy ** - Show fewer authors

Nature Methods 14, 1063-1071 (2017) Received: 29 December 2016



Metagenome assembly tools - performance

Main conclusion:
Assembly is substantially affected by the presence of related strains
Parameter settings markedly affected performance

Assemblers using multiple k-mers (Minia, MEGAHIT and Meraga) substantially outperformed
single k-mer assemblers

A* k63
Meraga k33-k63
Velour k63 ¢4.01 A

MReeE maWm 48 a» e -

[

i

Velour k63 ¢2.0 A

Velour k31 ¢4.01 -

Velour k31 ¢2.0 -

Megahit ep mti200 k21-k91 -

i 1 1 e

Megahit ep k21-k91 4
Megahit k21-k91 -
Ray k91 -

R | B

Ly

Ray k71 -

Ray blacklight k64 -

Byl
=
|
|

T

Ray k51 -

Minia k21-k91 -
Gold standard + «

s sl |
4
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Metagenome assembly tools - performance

Main conclusion:
Most assemblers except for Meraga and Minia did not recover very-high-copy circular elements

Megahit (k21-k91)

——— -
-~

Velour (k63, c2.0)

Ray (k51)

A* (k63)

» ' - L] .—.'. —_— —‘;— — —~ - \J
10 100 1,000
4 Sequencing coverage
50 4
- Genome groups
0- - . - : - & Unique (ANI < 95%) -o- Strains (ANI 295%) -4 Circular elements
2 9 10 100 1,000

Sequencing coverage



Evaluation of metagenome assemblies

Assembly accuracy is difficult to measure!!!!
Few ways to distinguish true insight from wrongly assembled metagenome sequences

30



Contiguity-based evaluation of sequence assemblies

MetaQUAST evaluates and compares metagenome assemblies based on alignments
to close references

Ns5o = the smallest of the largest contigs covering 50% of the total size of all contigs

Misassembly where two parts of the same contig align to distinct references

Contigs that include both large aligned and unaligned fragments

Statistics without reference IDBA_UD Ray SOAPdenovo2  SPAdes E— i

# contigs || 31224 10327 36468 40546 Worst Median Best

Largest contig || 305 144 99107 40707 189063

Total length 12| 80325286 30411921 46741224 92397329

Total length (>= 1000 bp) 69223529 27080646 30720336 77 823 828

Total length (>= 10000 bp) 34930908 13755677 2800864 33477263

Total length (»>= 50000 bp) 16008349 2346322 0 11409912

Misassemblies

# misassemblies || 1132 407 831 1240

Misassembled contigs length [ 10448260 4115772 911826 10780557

Mismatches

# mismatches per 100 kbp 904.95 1054.68  888.21 | 1401.84

# indels per 100 kbp (1] 31.88 27.7 17.09 - 51.64 ?

# N's per 100 kbp || 238.48 2087.27 3730.51 1425.14

Genome statistics

Genome fraction (%) | 12.796 4.386 8.055 11.585
Akkermansia_muciniphila_ATCC  0.003 - - 0.011 . :
Alistipes_putredinis 1.366 0.595 0.61 1.117 MetaQUAST: evaluation of metagenome
Anaerotruncus_colihominis 2.466 2.067 1.768 2.320 assemblies
Bacteroides_caccae 5.343 2.643 3.928 5.138 Bioinformatics. 2015;32(7):1088-1090.
Bacteroides_capillosus 1.173 0.27 1.05 doi:10.1093/bioinformatics/btv697

31 Bacteroides_cellulosilyticus 1.278 0.952 el nine ey 0.96

Rartarnidec ranrnranla

W 8522




Compare the assembly from different assemblers

Or with raw data or trimmed/filtered data

Reference size: 306 971432 bp

Reference Size, bp GC, %
Akkermansia_muciniphila_ATCC_BAA-835 2664102 55.76
Alistipes_putredinis 2550678 53.27
Anaerotruncus_colihominis 3719688 54.18
Bacteroides_caccae 5493117 42.83
Bacteroides_(apillosus 4241076 59.11 80 mi __ Plots: Contigs Largest contig Total len Misassemblies Mis. len Mismatches Indels N's per 100 kbp Genome frac. Dup. ratio NGASO 2 relocations
Bacteroides_cellulosilyticus 7694202 43.05 ' translocations
Bacteroides_coprocola 2784 45.19 : inversions
Bacteroides_coprophilus 4041504 45.72
Bacteroides_dorei 6060928 42.2 Back to overview
Bacteroides_eggerthii 4611535 44.71 IDBA_UD
Bacteroides_finegoldii 5124109 425 SoAPdenovo2
Bacteroides_fragilis_3_1_12 5530115 43.62 Seades
Bacteroides_fragilis_NCTC_9343 5205140 43.1% |
Bacteroides_fragilis_YCH46 5277274 43.27
Bacteroides_intestinalis 4605106 43.54
Bacteroides_ovatus 7010996 423
Bacteroides_pectinophilus 29332 36.96
Bacteroides_plebeius 4421924 4431
Bacteroides_sp_1_1 6 6760735 43.02
Bacteroides_sp_2_1_7 5180144 45.08
Bacteroides_sp_2_2_4 7101224 42.13 ox 5
Bacteroides_sp_3_2_5 5116282 43.17 ; s
Bacteroides_sp_4_3_47FAA 5442925 42.7 ol 3
Bacteroides_sp_9_1_42FAA 5622644 4233 % g
Bacteroides_sp_D1 5974559 41.88 i 3,
Bacteroides_sp_D4 5538248 41.75 3 t
Bacteroides_sp_XB1A 5976145 41.89 g g
Bacteroides_sp__4_3_47FAA 5442925 427 £
Bacteroides_sp_ 9_1_42FAA 4684745 422 E
BaaerOides—Stercoris 4102660 45.93 References are ordered starting from the best average value among all assemblies.
Bacteroides_thetaiotaomicron_VPI-5482 6260361 42.84
Bacteroides_uniformis 4835507 46.49
Bacteroides_vulgatus_ATCC_8482 5163189 42.2
Bifidobacterium_pseudocatenulatum 2313752 56.38

32 Blautia_hansenii 3058721 38.99
Bryantella_formatexigens 4548960 49.55

Butyrivibrio crossotus 2496039 37.75



Consistency-based evaluation of sequence assemblies

Align reads against assembly of itself (not against reference)
Erroneous placement of reads within the assembly
These signatures that can be detected computationally

ASSEMBLY
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Consistency-based evaluation of sequence assemblies

Align reads against assembly of itself (not against reference)
Erroneous placement of reads within the assembly
These signatures that can be detected computationally

ASSEMBLY
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Consistency-based evaluation of sequence assemblies

Align reads against assembly of itself (not against reference)
Erroneous placement of reads within the assembly
These signatures that can be detected computationally

INCONSISTENT PLACEMENT OF READ PAIRS

ASSEMBLY
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Four primary types of assembly errors that can be identified by mapping

reads to the assembly

Types of Assembly Errors
Repeat Collapse Insertion Deletion Inversion
Genome
F g a F g @ F g a g a
H1H2
Assembly
—— —— - _—
Evidence of Assembly Errors
Coverage m
+ m 4 +
Read pairs
» a D @ » ‘@ >
Split Read
2 - - w m
36 —il— —i— . —a—

Brief Bioinform. Published online Auqust 07, 2017. doi:10.1093/bib/bbx098



Use read alignment statistics to see how well do the reads align back to the

draft assemblies

Read congruency is an important measure in determining assembly accuracy

Clusters of read pairs that align incorrectly are strong indicators of mis-assembly

Aligned reads

Consensus contig

ACGCGATTCAGGTTACCACG
GCGATTCAGGTTACCACGCG
GATTCAGGTTACCACGCGTA
TTCAGGTTACCACGCGTAGC
CAGGTTACCACGCGTAGCGC
GGTTACCACGCGTAGCGCAT
TTACCACGCGTAGCGCATTA
ACCACGCGTAGCGCATTACA
CACGCGTAGCGCATTACACA
CGCGTAGCGCATTACACAGA
CGTAGCGCATTACACAGATT
TAGCGCATTACACAGATTAG

ACGCGATTCAGGTTACCACGCGTAGCGCATTACACAGATTAG

37
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FRCbam uses the alignment of reads to find regions of assembled sequence

that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)

FRC Curve
120

100

80 |

For example
regions with many
PE reads with pair
mapped in different

contigs 2 |

For example
regions with low
coverage

60

40 |

Approximate Coverage (%)

.Mira_large_contigs_bwa_alignment_FRC txt
Nelvet_contigs bwa_alignment_FRC txt
.Mira trimmed_data_contigs bwa_alignment FRC.bt ———
JCLC _contigs bwa_alignment FRC.bt ———

1 1 1

0 100 200 300 400 500 600 700
Feature Threshold
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FRCbam uses the alignment of reads to find regions of assembled sequence

that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)

Feature Description

LOW_COV_PE low read coverage areas (all aligned reads).

HIGH_COV_PE high read coverage areas (all aligned reads).

LOW_NORM_COV_PE low paired-read coverage areas (only properly aligned pairs).
HIGH_NORM_COV_PE high paired-read coverage areas (only properly aligned pairs).
COMPR_PE low CE-statistics computed on PE-reads.

STRECH_PE high CE-statistics computed on PE-reads.

HIGH_SINGLE_PE high number of PE reads with unmapped pair.

HIGH_SPAN_PE high number of PE reads with pair mapped in a different contig/scaffold.
HIGH_OUTIE_PE high number of mis-oriented or too distant PE reads.

COMPR_MP low CE-statistics computed on MP reads.

STRECH_MP high CE-statistics computed on MP reads.

HIGH_SINGLE_MP high number of MP reads with unmapped pair.

HIGH_SPAN_MP high number of MP reads with palr mapped in a different contig/scaffold.
HIGH_OUTIE_MP high number of mis-oriented or too distant MP reads.

The Table provides a brief description for each implemented feature,

doi10.1371/journal pone.0052210.t001
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Generate report and show to your boss ©

MultiQCis a reporting tool that parses summary statistics from results and log files
generated by other bioinformatics tools
Parses relevant information from log files to a HTML report file

Mu!ﬂg_ M u It i QC= MultiQC Toolbox

General Stats % Rename Samples Apply
) . Eel
A modular tool to aggregate results from bioinformatics analyses across many s 8 [ From o N
QUAST
report. Click here for bulk input.

Assembly Statistics )(
Report generated on 2017-12-24, 14:22 based on data in: /Users/service/Box Sync/ELIXIR/Excellerate/M.__,_ Regexmode @ help 1 Clear
/reduced_data/multiqc

FastQC A

Sequence Quality Histograms © Welcome! Not sure where to start? [IZEER LRI  (6:06) @

Per Sequence Quality Scores

Number of Contigs

L
Per Base Sequence Content . .
Per Sequence GC Content G e n e ral Statl Stl cs H
Per Base N Content Al Copy table i Configure Columns | JliPlot =~ Showing &g rows and %/ columns.
Sequence Length Distribution Sample Name N50 (Kbp) Length (Mbp) % Dups e
Sequence Duplication Levels clean_megahit 3.4bp _
Overrepresented sequences clean_metaspades 9.4bp _
Adapter Content
sample_R1 . 4¢
sample_R2 0.0% 4¢
sample_trim_megahit 3.7bp _
le_trim_metaspad: 4.0bp 29.4bp
A




Practical — Day 2
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Practical — Day 2

Metagenomic whole genome shotgun dataset from artificial marine mock sample
Get to know the FASTQ file format — simple conversions
Perform quality control of the sequence reads
Merge overlapping read pairs
Trim poor quality data
Assemble the metagenome
Validate the assembly
Create a report

42



Practical — Day 2 - Summary

Quality control

l

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Read 1
Read 1 Adapter Read 2 Adapter
3

Merge reads

-3 .5
BBmerge ) Read 2

l

Trim sequence reads

l

Assembly

Megahit l

Validation

Trimmomatic

—
—

43 MetaQUAST

Compare assemblies



