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Assembly is the computational reconstruction of a longer sequence from 
smaller sequence reads

Which method should I choose that will produce the highest-quality assembly with 
the data that I have?



Why do we want to sequence metagenomes?

Important for understanding the biology and functional potential of hard-to-culture 
microorganisms

Metagenomic recovery of complete or draft microbial genomes is a starting point to analyze the 
“taxon-specific” potential of organisms within their community and ecosystem context

3 Donovan Parks, Australian 
school of ecogenomics



There are two approaches for sequence assembly

de novo assembly:
Reconstructing a DNA sequence with no prior knowledge of the sequence

Assembly with reference sequences:
Mapping sequence reads using a reference sequence
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How do we perform sequence assembly of single genomes?

Challenge if you don’t know what the genome should look like 
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We have few ways to distinguish true insight from wrongly assembled 
genome sequence

What is real, what is missing, and what is experimental artifact?
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How do we perform sequence assembly of metagenomes?

Even more challenging for metagenomes
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How do we perform sequence assembly of metagenomes?

Diverse samples – more challenging as it is not possible to sequence the complete 
DNA
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Some definitions of terms

Contig = Consensus sequence of overlapping sequence reads
Scaffold = Contigs joined together using read-pair information
Gap = Regions of the original DNA sequence that are not covered
Repeats = Identical regions of DNA
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Some definitions of terms

Contig = Consensus sequence of overlapping sequence reads
Scaffold = Contigs joined together using read-pair information
Gap = Regions of the original DNA sequence that are not covered
Repeats = Identical regions of DNA
Coverage = The average number of reads that cover each base
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Coverage

Number of reads (n) x Length of reads (l)
Length of metagenome (L)



Some assembly challenges

Uncovered regions
Noise in the data (1-2% of the bases are wrong)
Sequence repeats (bacterial genomes ~5%, mammals ~50%)
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Merge overlapping paired-end reads prior to assembly

Generate longer reads by overlapping and merging read pairs before assembling a 
sequence

S. aureus – PE illumina Original assembly FLASH

Total contig size (Mb) 2.91 2.94

Contig N50 size (kb) 1.45 8.40

Contig maximum (kb) 8.18 36.07

Scaffold N50 (kb) 2.07 8.80

Scaffold maximum (kb) 11.23 36.07
Magoč and Salzberg, Bioinformatics. 2011 Nov 1; 27(21): 2957–2963.



Short-read sequencing technologies have made the computational 
challenge harder

Highly memory-intensive task (TB) and storage demanding (TB)
45 GB of raw sequencing data for 32�coverage of a human genome (three Illumina HiSeq2500 runs)
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Some computational considerations
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Some questions you should ask before you start genome sequencing

What is the purpose of sequencing the metagenome?
Complete sequence (Base-perfect sequencing)
Draft sequence

How much data (and what technology) do you need?
Access to computational resources?
Plan for analyses?
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http://www.sullivan-financial.com/p/planning-your-financial-future

Number of reads x Length of read

Length of genome
Coverage = Coverage

Length of genome

Number 
of reads



Graph-based assembly methods

Greedy graph assembly (greedy extension, or extension-based)
Overlap-Layout-Consensus assembly (OLC)
De Bruijn graph assembly (DBG)
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de bruijn graph assembly

'Bridges of Königsberg problem’ - Leonhard Euler in 1735 

Seven bridges joined the four parts of the city located on opposing banks of the Pregel River and 

two river islands. 

Could every part of the city could be visited by walking across each of the seven bridges exactly 

once and returning to one's starting location?

17 Compeau, Nature Biotechnology 29 (2011)



de bruijn graph assembly

'Bridges of Königsberg problem’ - Leonhard Euler in 1735 
Euler represented each landmass as a point (called a node) and each bridge as a line segment 
(called an edge) connecting two points. 
This creates a graph—a network of nodes connected by edges
Algorithm determining whether an arbitrary graph contains a path that visits every edge exactly 
once and returns to where it started

18 Compeau, Nature Biotechnology 29 (2011)



de bruijn graph assembly

'Bridges of Königsberg problem’ - Leonhard Euler in 1735 
Euler represented each landmass as a point (called a node) and each bridge as a line segment 
(called an edge) connecting two points. 
This creates a graph—a network of nodes connected by edges
Algorithm determining whether an arbitrary graph contains a path that visits every edge exactly 
once and returns to where it started

19 Compeau, Nature Biotechnology 29 (2011)
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de bruijn graph are used by most modern de novo assemblers

Creates a sorted table of all sub-sequences (words) found in the reads
The words are relatively short, e.g. about 20 (20 mers) 
Given any word in the table, it will look up potential neighbouring words
The algorithm tries to make a graph (Eulerian path) connecting all words
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homes.cs.washington.edu

Construct a de Bruijn graph (DBG) 
– Nodes = one for each unique k-mer

– Edges = k-1 exact overlap between two nodes

Graph simplification
– Merge chains, remove bubbles and Rps

Find a Eulerian path through the graph



de bruijn graph are used by most modern de novo assemblers

SNPs or a sequencing errors will create so-called bubbles
For sequencing errors the deviating word occurs only once
For heterozygous SNPs both paths represented more or less equally
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TCGCGGA
CGCGGAT
GCGGATT
CGGATTC



de bruijn graph are used by most modern de novo assemblers

It will continue to add words – build coverage of the assembly
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de bruijn graph are used by most modern de novo assemblers

Repeats are the most difficult problem for the de novo assembly
Impossible to resolve if the repeat is longer than the paired distance of read pairs
Such repeats will cause the assembler to spit the graph – make contigs
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Many assemblers produce an assembly graph in FASTG format (G=graph)

Unlike FASTA (linear representation), FASTG can express branching arising from eg. 
ambiguities and repetitive segments 
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FASTG can easily be converted to FASTA

FASTG and derived FASTA files share the same base co-ordinate system
FASTA + Markup will produce the original FASTG
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Metagenome assembly tools

Megahit
MetaSPAdes
Snowball
MetaVelvet
Ray Meta
MetAMOS
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Andreas Bremges



Metagenome assembly tools - performance

CAMI - challenge the developers to benchmark their programs
Highly complex and realistic data sets
∼700 newly sequenced microorganisms
∼600 novel viruses and plasmids
Assembly and genome binning
Taxonomic profiling and binning

27



Metagenome assembly tools - performance

Main conclusion:
Assembly is substantially affected by the presence of related strains
Parameter settings markedly affected performance
Assemblers using multiple k-mers (Minia, MEGAHIT and Meraga) substantially outperformed 
single k-mer assemblers
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Metagenome assembly tools - performance

Main conclusion:
Most assemblers except for Meraga and Minia did not recover very-high-copy circular elements
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Evaluation of metagenome assemblies

Assembly accuracy is difficult to measure!!!!
Few ways to distinguish true insight from wrongly assembled metagenome sequences
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Contiguity-based evaluation of sequence assemblies

MetaQUAST evaluates and compares metagenome assemblies based on alignments 
to close references

N50 = the smallest of the largest contigs covering 50% of the total size of all contigs
Misassembly where two parts of the same contig align to distinct references
Contigs that include both large aligned and unaligned fragments
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MetaQUAST: evaluation of metagenome
assemblies
Bioinformatics. 2015;32(7):1088-1090. 
doi:10.1093/bioinformatics/btv697



Compare the assembly from different assemblers

Or with raw data or trimmed/filtered data
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Consistency-based evaluation of sequence assemblies

Align reads against assembly of itself (not against reference)
Erroneous placement of reads within the assembly
These signatures that can be detected computationally

33

33 ASSEMBLY



Consistency-based evaluation of sequence assemblies

Align reads against assembly of itself (not against reference)
Erroneous placement of reads within the assembly
These signatures that can be detected computationally
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Consistency-based evaluation of sequence assemblies

Align reads against assembly of itself (not against reference)
Erroneous placement of reads within the assembly
These signatures that can be detected computationally
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INCONSISTENT PLACEMENT OF READ PAIRS



Four primary types of assembly errors that can be identified by mapping 
reads to the assembly
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Use read alignment statistics to see how well do the reads align back to the 
draft assemblies

Read congruency is an important measure in determining assembly accuracy
Clusters of read pairs that align incorrectly are strong indicators of mis-assembly

37 https://contig.wordpress.com/tag/alignment/



FRCbam uses the alignment of reads to find regions of assembled sequence 
that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)
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For example 
regions with many 
PE reads with pair 
mapped in different 

contigs

For example 
regions with low 

coverage



FRCbam uses the alignment of reads to find regions of assembled sequence 
that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)
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Generate report and show to your bossJ

MultiQC is a reporting tool that parses summary statistics from results and log files 
generated by other bioinformatics tools

Parses relevant information from log files to a HTML report file
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Practical – Day 2
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Now it is your turn to try!!!!!



Practical – Day 2

Metagenomic whole genome shotgun dataset from artificial marine mock sample
Get to know the FASTQ file format – simple conversions
Perform quality control of the sequence reads
Merge overlapping read pairs
Trim poor quality data
Assemble the metagenome
Validate the assembly
Create a report
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Practical – Day 2 - Summary
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Quality control

Merge reads

BBmerge

Trim sequence reads

Trimmomatic

FastQC

Assembly

Megahit

Validation

MetaQUAST

A B C D

Compare assemblies


