Assembly & validation

Workshop in marine metagenomics

Tromsø November 2018

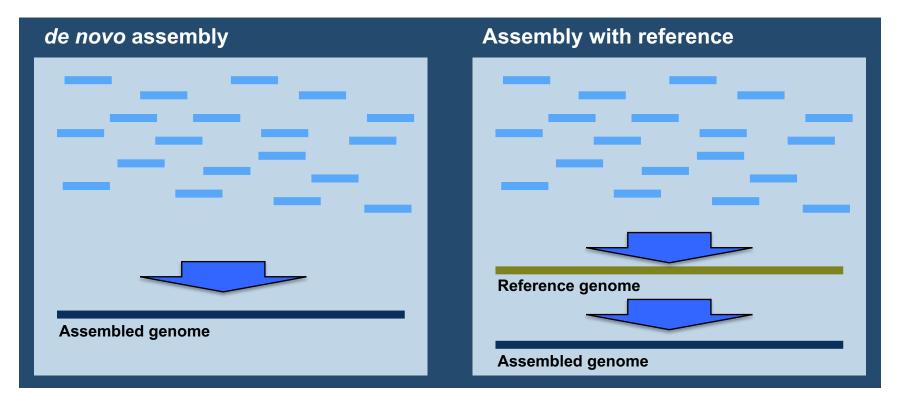
Assembly is the computational reconstruction of a longer sequence from smaller sequence reads

Which method should I choose that will produce the highest-quality assembly with the data that I have?

Important for understanding the biology and functional potential of hard-to-culture microorganisms

Metagenomic recovery of complete or draft microbial genomes is a starting point to analyze the "taxon-specific" potential of organisms within their community and ecosystem context

Donovan Parks, Australian school of ecogenomics


There are two approaches for sequence assembly

de novo assembly:

Reconstructing a DNA sequence with no prior knowledge of the sequence

Assembly with reference sequences:

Mapping sequence reads using a reference sequence

How do we perform sequence assembly of single genomes?

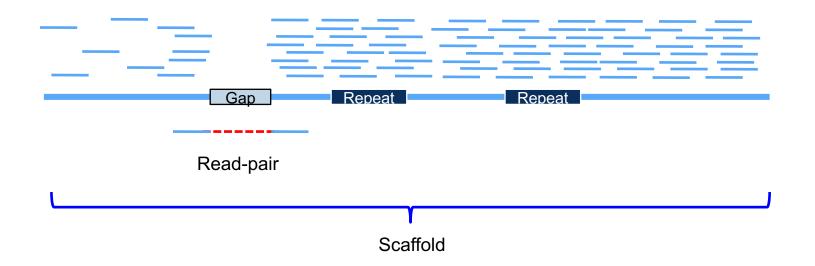
Challenge if you don't know what the genome should look like

We have few ways to distinguish true insight from wrongly assembled genome sequence

What is real, what is missing, and what is experimental artifact?

How do we perform sequence assembly of metagenomes?

Even more challenging for metagenomes


How do we perform sequence assembly of metagenomes?

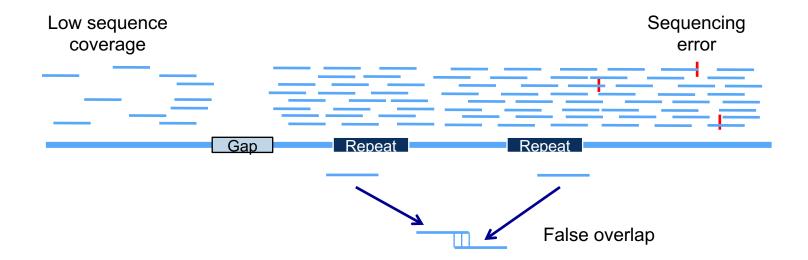
Diverse samples – more challenging as it is not possible to sequence the complete DNA

Some definitions of terms

- Contig = Consensus sequence of overlapping sequence reads
- Scaffold = Contigs joined together using read-pair information
- Gap = Regions of the original DNA sequence that are not covered
- Repeats = Identical regions of DNA

Some definitions of terms

Contig	= Consensus sequence of overlapping sequence reads
Scaffold	= Contigs joined together using read-pair information
Gap	= Regions of the original DNA sequence that are not covered


- Repeats = Identical regions of DNA
- Coverage = The average number of reads that cover each base

Number of reads (n) x Length of reads (l) Length of metagenome (L) Uncovered regions

```
Noise in the data (1-2% of the bases are wrong)
```

Sequence repeats (bacterial genomes ~5%, mammals ~50%)

Generate longer reads by overlapping and merging read pairs before assembling a sequence

S. aureus – PE illumina	Original assembly	FLASH
Total contig size (Mb)	2.91	2.94
Contig N5o size (kb)	1.45	8.40
Contig maximum (kb)	8.18	36.07
Scaffold N50 (kb)	2.07	8.80
Scaffold maximum (kb)	11.23	36.07

Magoč and Salzberg, Bioinformatics. 2011 Nov 1; 27(21): 2957–2963.

Short-read sequencing technologies have made the computational challenge harder

Highly memory-intensive task (TB) and storage demanding (TB)

45 GB of raw sequencing data for 32 × coverage of a human genome (three Illumina HiSeq2500 runs)

F1000Research Open for Science

Ten steps to get started in Genome Assembly and Annotation [version 1; referees: awaiting peer review]

Victoria Dominguez Del Angel (p)¹, Erik Hjerde (p)², Lieven Sterck (p)^{3,4}, Salvadors Capella-Gutierrez^{5,6}, Cederic Notredame^{7,8}, Olga Vinnere Pettersson⁹, Joelle Amselem (p)¹⁰, Laurent Bouri (p)¹, Stephanie Bocs (p)¹¹⁻¹³, Christophe Klopp (p)¹⁴, Jean-Francois Gibrat (p)^{1,15}, Anna Vlasova (p)⁸, Brane L. Leskosek¹⁶, Lucile Soler¹⁷, Mahesh Binzer-Panchal (p)¹⁷, Henrik Lantz (p)¹⁷

Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data

Samuel Lampa, Martin Dahlö, Pall I Olason, Jonas Hagberg and Ola Spjuth

GigaScience 2013 2:9 DOI: 10.1186/2047-217X-2-9 © Lampa et al.; licensee BioMed Central Ltd. 2013

Some computational considerations

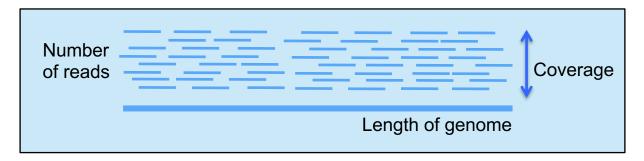
Reference Genome	Size	Software	Input (space used on disk)	CPU/RAM Available	Real time	Max RAM Used
Aliivibrio wodanis	4 972 754 bp	SPAdes v3.10		4 CPU/16GB RAM	2h17m3s	2,94GB
	4 972 7 54 pp	SPAdes V3. TU	200x Illumina reads (760 MB)	12 CPU/256GB RAM	38m8s	9,37GB
		Smartdenovo	20x Pacbio P6C4 Corrected long reads (1,9 GB)	8 CPU/16GB RAM	24m47s	1,92GB
		Smartuenovo	80x Pacbio P6C4 Corrected long reads (7,6 GB)	8 CPU/16GB RAM	5h38m16s	7,29GB
Caenorhabditis elegans	100 272 607 bp	REPET v2.5	<i>C. Elegans</i> genome (100 MB) Repbase aa 20.05 (20 MB) Pfam 27 (GypsyDB) (1,2 GB) rRNA from eukaryota (2,6 MB)	8 CPU/16 GB RAM	1h53m11s + 19h9m40s	8,96GB
		Eugene v4.2a	<i>C. Elegans</i> genome (100 MB) Repbase aa 20.05 (20 MB) Proteins sequences (swissprot) (2,8 MB) ESTs sequences (29 MB)	8 CPU/32 GB RAM	5h2m30s	16,94GB
		Smartdenovo	20x Pacbio P5C3 corrected long reads (2,7 GB)	8 CPU/16GB RAM	1h16m20s	2,4GB
		REPET v2.5	<i>A. Thaliana</i> genome (130 MB) Repbase aa 20.05 (20 MB) Pfam 27 (GypsyDB) (1,2 GB) rRNA from eukaryota (2,6 MB)	8 CPU/16 GB RAM	5h6m23s + 33h10m34s	10,25GB
		Eugene v4.2a	A. <i>Thaliana</i> genome (130 MB) Repbase aa 20.05 (20 MB) Proteins sequences (swissprot) (9,2 MB) ESTs sequences (31 MB)	8 CPU/32 GB RAM	6h17m18s	17,25GB
Theobroma cacao	324 761 211 bp	Eugene v4.2a	<i>T. Cacao</i> genome (315 MB) Repbase aa 20.05 (20 MB) Proteins sequences (swissprot) (31 MB)	8 CPU/188 GB RAM	41h27m13s	72,5GB

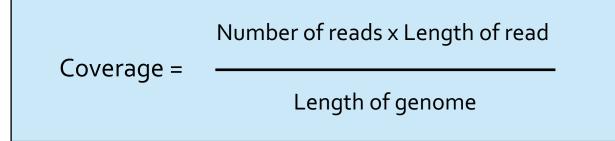
Some questions you should ask before you start genome sequencing

What is the purpose of sequencing the metagenome?

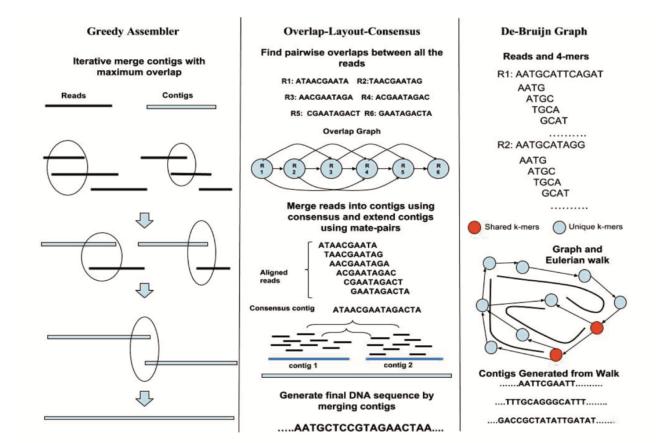
Complete sequence (Base-perfect sequencing)

Draft sequence


How much data (and what technology) do you need?


Access to computational resources?

Plan for analyses?


http://www.sullivan-financial.com/p/planning-your-financial-future

Graph-based assembly methods

Greedy graph assembly (greedy extension, or extension-based) Overlap-Layout-Consensus assembly (OLC) De Bruijn graph assembly (DBG)

16

'Bridges of Königsberg problem' - Leonhard Euler in 1735

Seven bridges joined the four parts of the city located on opposing banks of the Pregel River and two river islands.

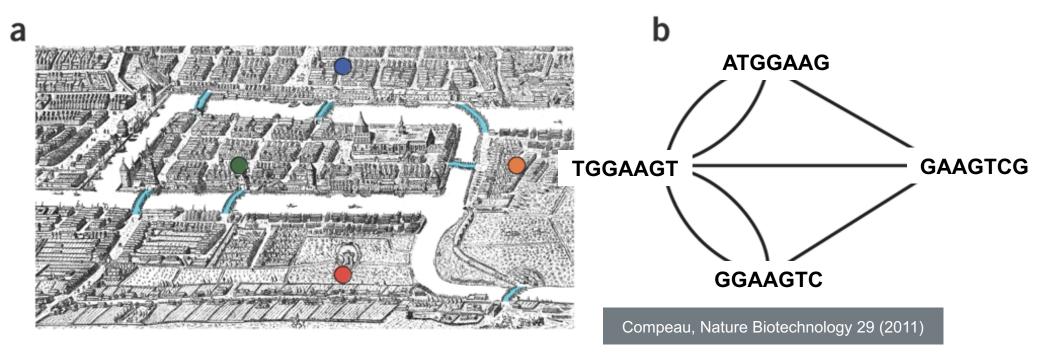
Could every part of the city could be visited by walking across each of the seven bridges exactly once and returning to one's starting location?

'Bridges of Königsberg problem' - Leonhard Euler in 1735

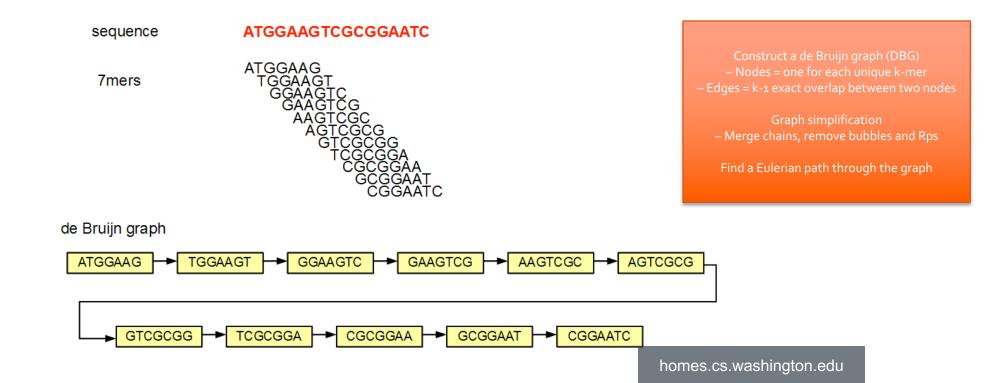
Euler represented each landmass as a point (called a node) and each bridge as a line segment (called an edge) connecting two points.

This creates a graph—a network of nodes connected by edges

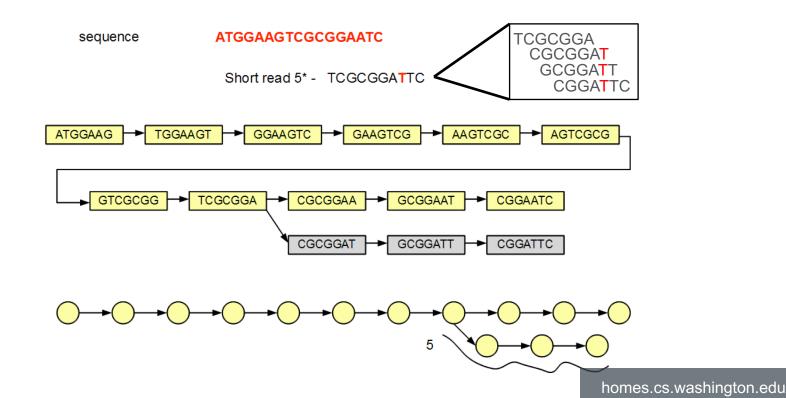
Algorithm determining whether an arbitrary graph contains a path that visits every edge exactly once and returns to where it started



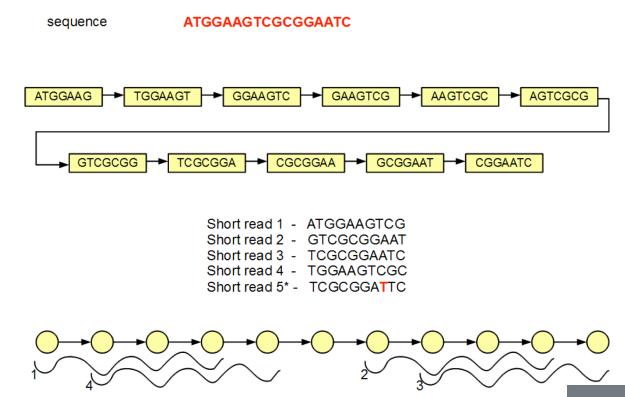
'Bridges of Königsberg problem' - Leonhard Euler in 1735


Euler represented each landmass as a point (called a node) and each bridge as a line segment (called an edge) connecting two points.

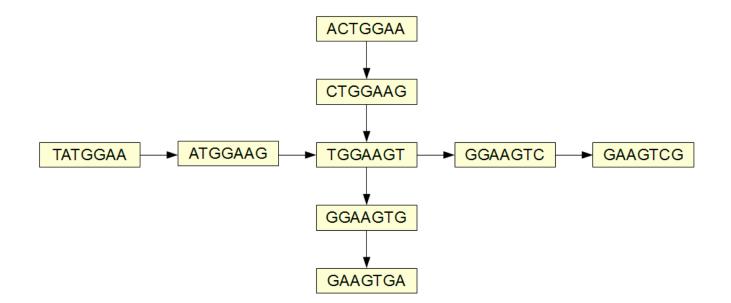
This creates a graph—a network of nodes connected by edges


Algorithm determining whether an arbitrary graph contains a path that visits every edge exactly once and returns to where it started

Creates a sorted table of all sub-sequences (words) found in the reads The words are relatively short, e.g. about 20 (20 mers) Given any word in the table, it will look up potential neighbouring words The algorithm tries to make a graph (Eulerian path) connecting all words

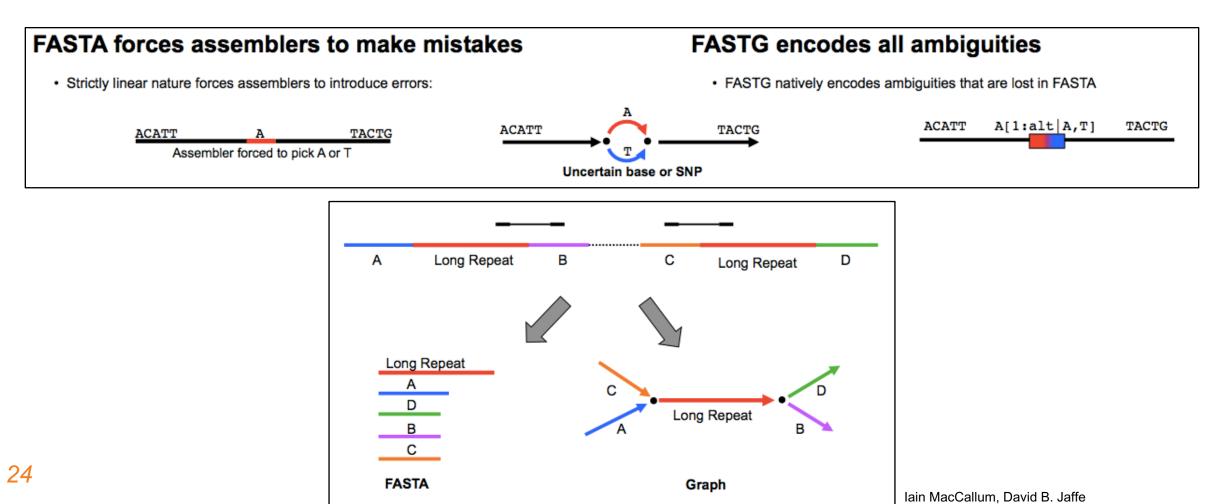


SNPs or a sequencing errors will create so-called bubbles For sequencing errors the deviating word occurs only once For heterozygous SNPs both paths represented more or less equally

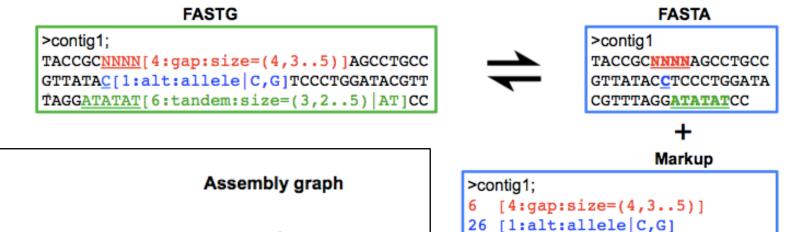


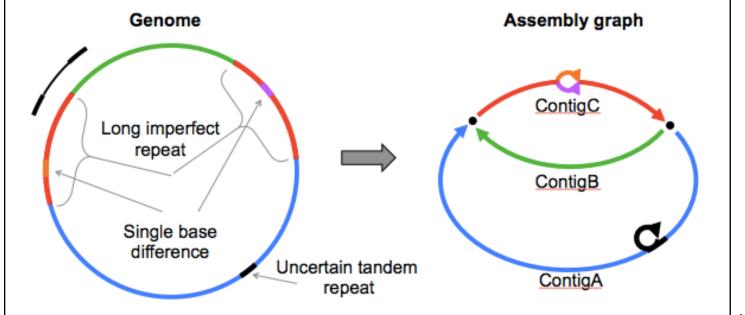
de bruijn graph are used by most modern de novo assemblers

It will continue to add words – build coverage of the assembly



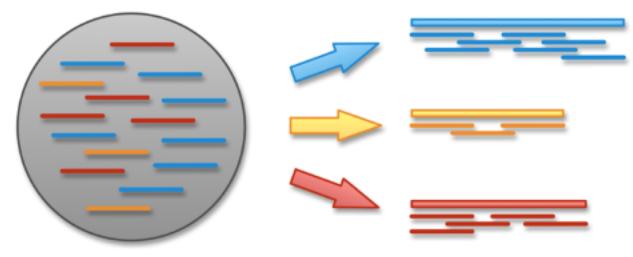
Repeats are the most difficult problem for the de novo assembly Impossible to resolve if the repeat is longer than the paired distance of read pairs Such repeats will cause the assembler to spit the graph – make contigs


Many assemblers produce an assembly graph in FASTG format (G=graph)


Unlike FASTA (linear representation), FASTG can express branching arising from eg. ambiguities and repetitive segments

FASTG and derived FASTA files share the same base co-ordinate system

FASTA + Markup will produce the original FASTG



52 [6:tandem:size=(3,2..5) AT]

Metagenome assembly tools

Megahit MetaSPAdes Snowball MetaVelvet Ray Meta MetAMOS

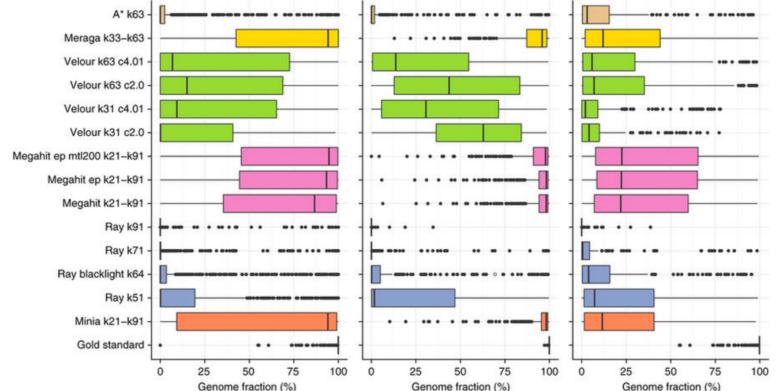
Andreas Bremges

CAMI - challenge the developers to benchmark their programs

Highly complex and realistic data sets ~700 newly sequenced microorganisms ~600 novel viruses and plasmids Assembly and genome binning Taxonomic profiling and binning

nature methods

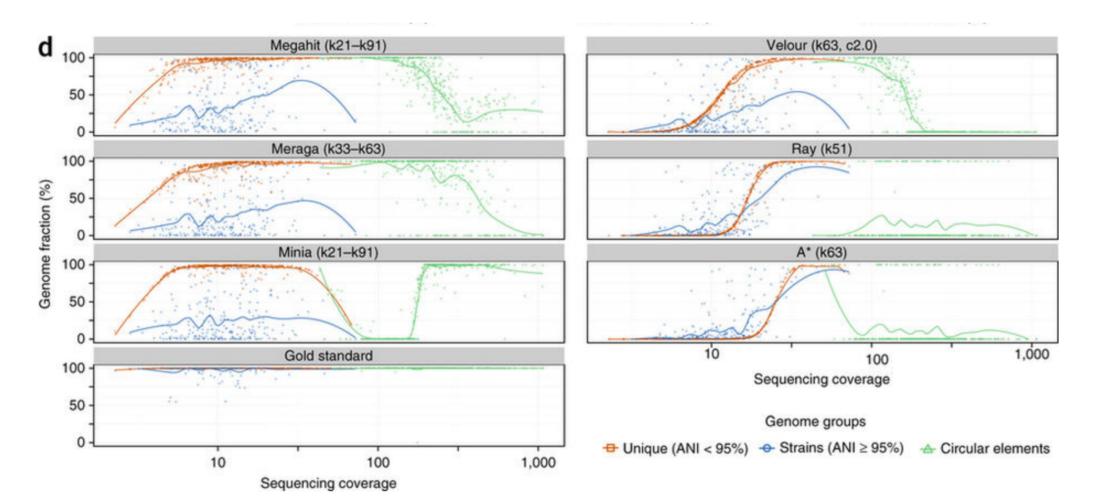
Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software


Alexander Sczyrba Apter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas Bremges, Adrian Fritz, Ruben Garrido-Oter, Tue Sparholt Jørgensen, Nicole Shapiro, Philip D Blood, Alexey Gurevich, Yang Bai, Dmitrij Turaev, Matthew Z DeMaere, Rayan Chikhi, Niranjan Nagarajan, Christopher Quince, Fernando Meyer, Monika Balvočiūtė, Lars Hestbjerg Hansen, Søren J Sørensen, Burton K H Chia, Bertrand Denis, Jeff L Froula, Zhong Wang, Robert Egan, Dongwan Don Kang, Jeffrey J Cook, Charles Deltel, Michael Beckstette, Claire Lemaitre, Pierre Peterlongo, Guillaume Rizk, Dominique Lavenier, Yu-Wei Wu, Steven W Singer, Chirag Jain, Marc Strous, Heiner Klingenberg, Peter Meinicke, Michael D Barton, Thomas Lingner, Hsin-Hung Lin, Yu-Chieh Liao, Genivaldo Gueiros Z Silva, Daniel A Cuevas, Robert A Edwards, Surya Saha, Vitor C Piro, Bernhard Y Renard, Mihai Pop, Hans-Peter Klenk, Markus Göker, Nikos C Kyrpides, Tanja Woyke, Julia A Vorholt, Paul Schulze-Lefert, Edward M Rubin, Aaron E Darling, Thomas Rattei & Alice C McHardy actional settings of the settings of the setting and the settings of the setting and the settings of the setti

Metagenome assembly tools - performance

Main conclusion:

- Assembly is substantially affected by the presence of related strains
- Parameter settings markedly affected performance


Assemblers using multiple k-mers (Minia, MEGAHIT and Meraga) substantially outperformed single k-mer assemblers

Metagenome assembly tools - performance

Main conclusion:

Most assemblers except for Meraga and Minia did not recover very-high-copy circular elements

Evaluation of metagenome assemblies

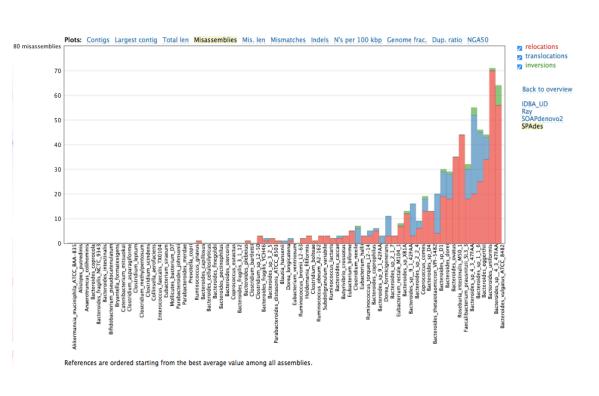
Assembly accuracy is difficult to measure!!!!

Few ways to distinguish true insight from wrongly assembled metagenome sequences

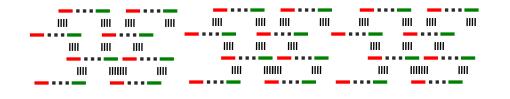
MetaQUAST evaluates and compares metagenome assemblies based on alignments to close references

N50 = the smallest of the largest contigs covering 50% of the total size of all contigs Misassembly where two parts of the same contig align to distinct references

Contigs that include both large aligned and unaligned fragments

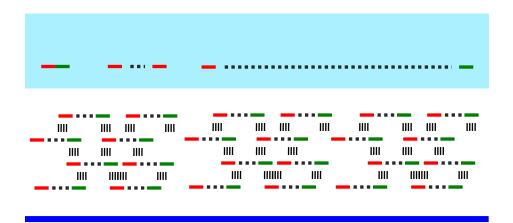

Statistics without reference	≡ IDBA_UD	🗏 Ray	SOAPdenovo2	SPAdes					
+ # contigs 🖃	31224	10 327	36 468	40 5 4 6	Worst M	t Median	Best		
+ Largest contig 🖃	305 144	99 107	40 707	189 063					
+ Total length 🖃	80 325 286	30 411 921	46 741 224	92 397 329					
+ Total length (>= 1000 bp)	69 223 529	27 080 646	30 720 336	77 823 828					
+ Total length (>= 10000 bp)	34 930 908	13 755 677	2 800 864	33 477 263					
+ Total length (>= 50000 bp)	16 008 349	2 346 322	0	11 409 912					
Misassemblies									
+ # misassemblies 🖃	1132	407	831	1240					
+ Misassembled contigs length 🖃	10 448 260	4 115 772	911 826	10 780 557					
Mismatches									
+ # mismatches per 100 kbp 🖃	904.95	1054.68	888.21	1401.84					
+ # indels per 100 kbp 🖂	31.88	27.7	17.09	51.64					
+ # N's per 100 kbp 🖂	238.48	2087.27	3730.51	1425.14					
Genome statistics									
– Genome fraction (%) 🖃	12.796	4.386	8.055	11.585					
Akkermansia_muciniphila_ATCC	0.003	-	-	0.011	MotoOLL		on of motodo		
Alistipes_putredinis	1.366	0.595	0.61	1.117		MetaQUAST: evaluation of metag			
Anaerotruncus_colihominis	2.466	2.067	1.768	2.320	assembli				
Bacteroides_caccae	5.343	2.643	3.928	5.138	Bioinform	natics. 2015;3	32(7):1088-10		
Bacteroides_capillosus	1.173	0.27	0.449	1.05	doi:10.10	93/bioinform	atics/btv697		
Bacteroides_cellulosilyticus	1.278	0.952	1.824	0.96					
Bacteroides conrocola	30.532	_	_	_					

Compare the assembly from different assemblers


Or with raw data or trimmed/filtered data

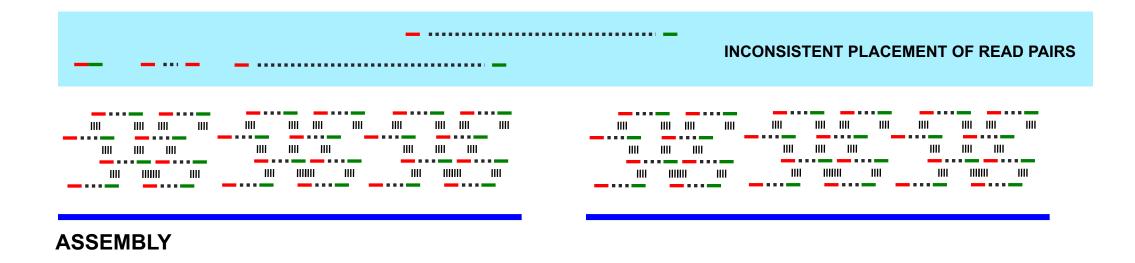
Reference size: 306 971 432 bp

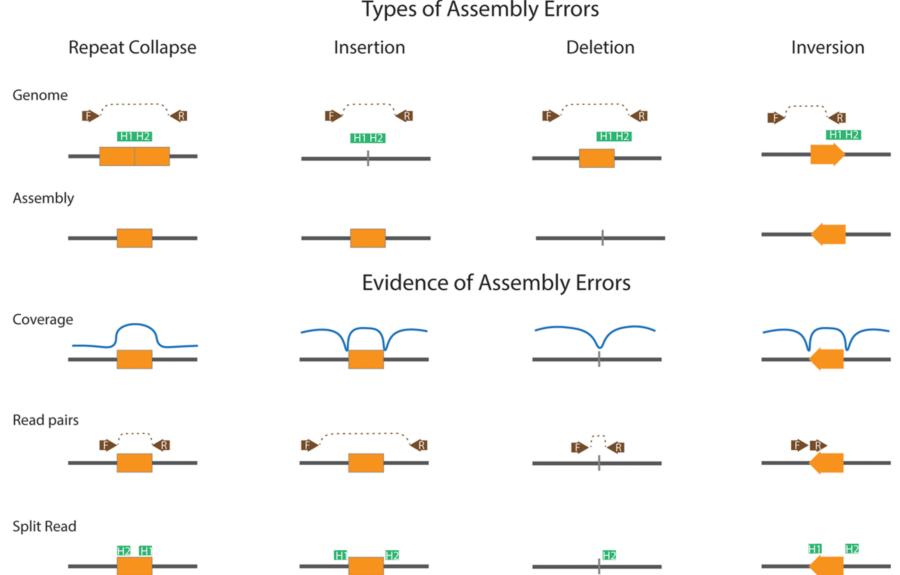
Reference	Size, bp	GC, %
Akkermansia_muciniphila_ATCC_BAA-835	2 664 102	55.76
Alistipes_putredinis	2 550 678	53.27
Anaerotruncus_colihominis	3719688	54.18
Bacteroides_caccae	5 493 117	42.83
Bacteroides_capillosus	4241076	59.11
Bacteroides_cellulosilyticus	7 694 202	43.05
Bacteroides_coprocola	2784	45.19
Bacteroides_coprophilus	4 041 504	45.72
Bacteroides_dorei	6 060 928	42.2
Bacteroides_eggerthii	4611535	44.71
Bacteroides_finegoldii	5 124 109	42.5
Bacteroides_fragilis_3_1_12	5 530 115	43.62
Bacteroides_fragilis_NCTC_9343	5 205 140	43.19
Bacteroides_fragilis_YCH46	5 277 274	43.27
Bacteroides_intestinalis	4 605 106	43.54
Bacteroides_ovatus	7 010 996	42.3
Bacteroides_pectinophilus	29332	36.96
Bacteroides_plebeius	4 421 924	
Bacteroides_sp_1_1_6	6 760 735	
Bacteroides_sp_2_1_7	5 180 144	
Bacteroides_sp_2_2_4	7 101 224	
Bacteroides_sp_3_2_5	5 116 282	
Bacteroides_sp_4_3_47FAA	5 442 925	
Bacteroides_sp_9_1_42FAA	5 622 644	
Bacteroides_sp_D1	5 974 559	
Bacteroides_sp_D4	5 538 248	41.75
Bacteroides_sp_XB1A	5 976 145	41.89
Bacteroides_sp4_3_47FAA	5 442 925	42.7
Bacteroides_sp9_1_42FAA	4684745	42.2
Bacteroides_stercoris	4 102 660	45.93
Bacteroides_thetaiotaomicron_VPI-5482	6260361	42.84
Bacteroides_uniformis	4 835 507	46.49
Bacteroides_vulgatus_ATCC_8482	5 163 189	
Bifidobacterium_pseudocatenulatum	2 313 752	
Blautia_hansenii	3 058 721	
Bryantella_formatexigens	4 548 960	
Butyrivibrio_crossotus	2 496 039	37.75



Align reads against assembly of itself (not against reference) Erroneous placement of reads within the assembly These signatures that can be detected computationally

ASSEMBLY


Align reads against assembly of itself (not against reference) Erroneous placement of reads within the assembly These signatures that can be detected computationally


ASSEMBLY

Align reads against assembly of itself (not against reference) Erroneous placement of reads within the assembly

These signatures that can be detected computationally

Four primary types of assembly errors that can be identified by mapping reads to the assembly

Types of Assembly Errors

Brief Bioinform. Published online August 07, 2017. doi:10.1093/bib/bbx098

Use read alignment statistics to see how well do the reads align back to the draft assemblies

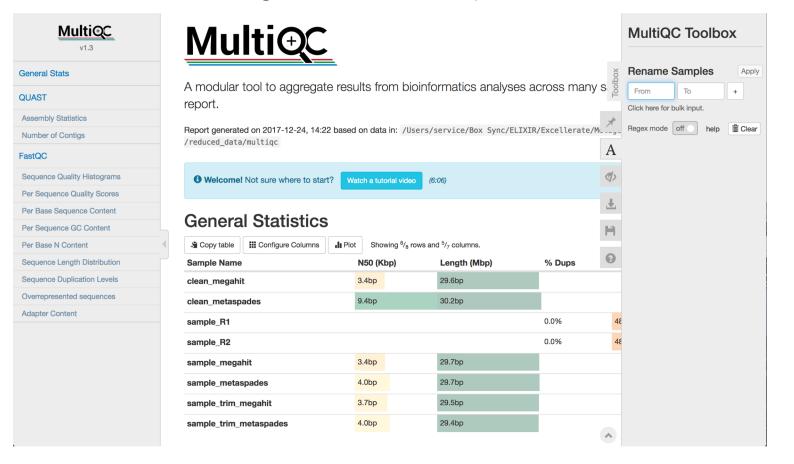
Read congruency is an important measure in determining assembly accuracy Clusters of read pairs that align incorrectly are strong indicators of mis-assembly

FRCbam uses the alignment of reads to find regions of assembled sequence that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)

FRCbam uses the alignment of reads to find regions of assembled sequence that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)

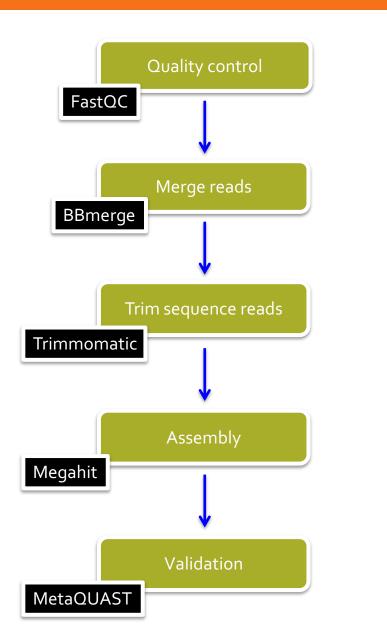

Feature	Description	
LOW_COV_PE	low read coverage areas (all aligned reads).	
HIGH_COV_PE	high read coverage areas (all aligned reads).	
LOW_NORM_COV_PE	low paired-read coverage areas (only properly aligned pairs).	
HIGH_NORM_COV_PE	high paired-read coverage areas (only properly aligned pairs).	
COMPR_PE	low CE-statistics computed on PE-reads.	
STRECH_PE	high CE-statistics computed on PE-reads.	
HIGH_SINGLE_PE	high number of PE reads with unmapped pair.	
HIGH_SPAN_PE	high number of PE reads with pair mapped in a different contig/scaffold.	
HIGH_OUTIE_PE	high number of mis-oriented or too distant PE reads.	
COMPR_MP	low CE-statistics computed on MP reads.	
STRECH_MP	high CE-statistics computed on MP reads.	
HIGH_SINGLE_MP	high number of MP reads with unmapped pair.	
HIGH_SPAN_MP	high number of MP reads with pair mapped in a different contig/scaffold.	
HIGH_OUTIE_MP	high number of mis-oriented or too distant MP reads.	

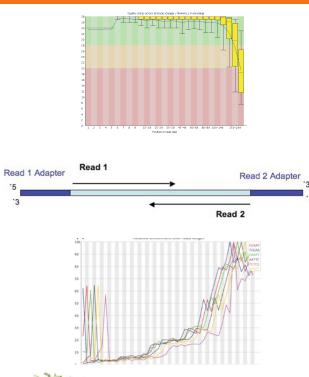
The Table provides a brief description for each implemented feature.

doi:10.1371/journal.pone.0052210.t001

MultiQC is a reporting tool that parses summary statistics from results and log files generated by other bioinformatics tools

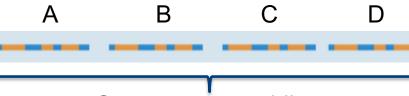
Parses relevant information from log files to a HTML report file




Now it is your turn to try!!!!!

Metagenomic whole genome shotgun dataset from artificial marine mock sample

- Get to know the FASTQ file format simple conversions
- Perform quality control of the sequence reads
- Merge overlapping read pairs
- Trim poor quality data
- Assemble the metagenome
- Validate the assembly
- Create a report


Practical – Day 2 - Summary

`3

Compare assemblies