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Quality control (QC)

• is crucial to the reliability of the findings concluded from the
analysis

• exclude samples of low quality
• several QC methods focussing on different aspects of the data

• signal distribution → histogram, boxplots
• array comparisons → PCA plots, array-array intensity

correlation, hierarchical clustering
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Intensity distribution: boxplots

• is a graphical representation
of statistical measures
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Density plot

• a smoothed histogram → shows intensity distribution of each
array

• identifies arrays that need to be carefully examined before
using in further analysis
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Hierarchical clustering

• widely used data analysis tool to combine or identify objects
that are close or similar to each other into clusters

• cluster → a collection of data objects similar to one another
within the same cluster & disimmilar to the objects in the
other clusters

• idea → build a binary tree (dendrogram) of the data that
successively merges similar groups of points

• requires measures of similarity/distances between individual
points and groups of data points
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Distance metrics

• distances are a numerical description of how far apart objects
are

• choosing the right distance measure is a critical step in
clustering

• examples:
• Euclidean distance
• Manhattan distance
• 1 − correlation
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Group similarity

• is a measure of strength of relationship between two objects
• several methods to define intergroup similarity:

1. single-linkage → is the minimum distance between any 2
objects, one from each cluster

2. complete-linkage → is the maximum distance between 2
objects, one from each cluster

3. average-linkage → is the average of all pairwise distances
between the members of both clusters

complete
linkage

single
linkage

average
linkage
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Dendrogram

• a tree that defines the relationships between objects and the
distance between clusters
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Array-array intensity correlation

• displays the correlation of all pairwise samples using heatmaps
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Principle component analysis

• transforms the data from a high-dimensional space into a 2 or
3-dimensional one without losing much of the variation in the
original values

• dimenisonality reduction allows visual inspection of the data
• idea → samples with similar intensities should cluster together
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Normalisation

• compensates for systematic technical differences between
chips

• unequal quantities of starting RNA
• different amounts of labelling
• varied hybrdisation conditions across the physical extent of one

array
• different scanner settings

• normalisation techniques:
• scale normalisation
• lowess normalisation
• MAS 5.0
• RMA (quantile normalisation)
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Robust multiarray average (RMA)

• one of the widest used normalisation methods for Affymetrix
arrays

• uses only the PM probes on the chip
• normalizing at probe level avoids the loss of information
• 4 steps:

• background correction
• quantile normalisation
• probe level intensity calculation
• probe set summarization (’median polishing’)
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QC after normalisation (I)
E

1

E
2

E
3

E
4

C
1

C
2

C
3

4
6

8
10

12

Raw data intensities

samples

lo
g2

 in
te

ns
iti

es

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

Normalized intensities

log−intensity

de
ns

ity

E1
E2
E3
E4
C1
C2
C3

Mihaela Martis Microarray data analysis 14



Workflow QC Normalisation DE

QC after normalisation (II)
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Identification of differentially expressed genes

• identify DE genes and apply statistical tests to assess the
significance of the observed associations

• statistical tests:
• comparison of two conditions: Student’s t-test or Wilcoxon

rank sum test
• multiple/nested conditions: ANOVA
• Linear models for microarray data (LIMMA)

• multiple testing → p-value adjustments (FDR, FWER)

• statistical significance is not necessarily the same as biological
significance
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Linear models for microarray data (LIMMA)

• is an R package designed to analyse complex experiments
involving comparisons between many samples simultaneously

• operates on a matrix of expression values
• it allows different levels of variability between genes and

between samples

• simplified approach:

• construct a linear model to describe the relation between
observed values and experimental conditions

• fit the linear model to each row of data to estimate the fold
changes

• apply empirical Bayes to calculate moderated t-statistics
• output: moderated t-statistics
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Linear models

• most used statistical methods
• can be used to compare 2 or more groups and for

multifactorial designs
• requires a design matrix and a contrast matrix

• design matrix → states which samples are allocated to which
conditions

• contrast matrix → describes which comparisons are of interest
• y = Xβ + ε

y : vector of observed data, X: design matrix, β: vector of parameters to estimate
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Example

• 2x3 factorial design: 2 conditions, each replicated three times
• goal: find differentially expressed genes between 2 conditions

Slide   Name          Group
1            E1                E
2            C1                C
3            E2                E
4            C2                C
5            E3                E
6            C3                C

designexpression matrixsamples

ID   E1    C1    E2    C2 ...
1     4.6   4.9    4.8    5.06
2     4.2   2.8    4.3    4.2
3     2.7   9.1    7.1    2.7
4     7.8   7.5    1.8    1.7
5     5.5   4.7    3.3    5.4
6     1.5   1.8    6.0    3.7
.....

C     E
0      1
0      1
0      1
1      0
1      0
1      0

contrast matrix

       E     C     E-C
C    0      1       -1
E    1      0        1

y1
y2
y3
y4
y5
y6

= ß0
ß1

Data
pre-processing

Information
borrowing

Quantitative
weighting

Variance
modelling

moderated t-statistics
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List of significantly differentially expressed genes

→ easy to sort and filter out significantly differentially expressed
genes: adj.P.Val < 0.05 and logFC > ±2
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Volcano plot
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• widely used visualisation
technique to inspect the
result of the statistical
analysis

• large difference in expression
→ the more extreme the
points will lie on the x-axis

• significant difference → the
smaller the p-value & the
higher the -log10(p-value)
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Software - data analysis

• R & Bioconductor
• agilp (Agilent Expression Arrays)
• oligo, exonmap (Gene/Exon ST Arrays)
• affy (3’biased Arrays)
• lumi, beadarray (Illumina Expression Arrays)
• limma

• Affymetrix Transcriptome Analysis Console (TAC)
• GeneSpring GX (Agilent, Affymetrix, Illumina arrays)
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Thank you for your attention!
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