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Study design
Important concepts

Nuisance variables Variables that influence the experiment
(increase variability), but are not of primary
interest.

Confounding variable A nuisance variable that changes as the
primary variable changes.

Randomization randomize as much as possible to avoid bias.

Blocking use if the nuisance variable is known and
controllable to reduce experimental
variability.

Replication more biological replicates → higher power.
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Study design
Important concepts

Nuisance variables Variables that influence the experiment
(increase variability), but are not of primary
interest.

I batch
I run order
I temperature
I time of day/year
I age
I gender
I ...

Confounding variable A nuisance variable that changes as the
primary variable changes.

Randomization randomize as much as possible to avoid bias.
Blocking use if the nuisance variable is known and

controllable to reduce experimental
variability.

Replication more biological replicates → higher power.
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Study design
Example

batch runorder treatment

1 1 1 1
2 1 2 1
3 1 3 1
4 1 4 1
5 1 5 1
6 1 6 1
7 2 7 2
8 2 8 2
9 2 9 2

10 2 10 2
11 2 11 2
12 2 12 2

Bad design!
Avoid confounding!
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Study design
Randomization

batch runorder treatment

1 1 4 2
2 1 2 1
3 1 11 2
4 1 3 2
5 1 7 1
6 1 6 2
7 2 8 1
8 2 9 1
9 2 1 2

10 2 12 1
11 2 5 1
12 2 10 2
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Study design
Blocking

Within each block (batch), randomize treatment

batch runorder treatment

1 1 4 1
2 1 2 2
3 1 11 1
4 1 3 2
5 1 7 1
6 1 6 2
7 2 8 2
8 2 9 2
9 2 1 1

10 2 12 2
11 2 5 1
12 2 10 1

General rule: Block what you can; randomize what you cannot.
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(increase variability), but are not of primary
interest.

Confounding variable A nuisance variable that changes as the
primary variable changes.

Randomization randomize as much as possible to avoid bias.

Blocking use if the nuisance variable is known and
controllable to reduce experimental
variability.

Replication more biological replicates → higher power.

11 / 29



Hypothesis testing

H0 the null hypothesis, e.g. t = 0, mA = mB , ”no difference”, ”no
change”.

H1 the alternative hypothesis, e.g. t 6= 0, mA 6= mB , ”there is a
difference/change”.

The p-value is the probability of obtaining an effect at least as
extreme as the observed, given that the null hypothesis is true.
p = P(observation or more extreme|H0)
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Hypothesis testing

H0 the null hypothesis, e.g. t = 0, mA = mB , ”no difference”, ”no
change”.

H1 the alternative hypothesis, e.g. t 6= 0, mA 6= mB , ”there is a
difference/change”.

The p-value is the probability of obtaining an effect at least as
extreme as the observed, given that the null hypothesis is true.
p = P(observation or more extreme|H0)

p=P(|x|>2)=0.046
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Hypotheis testing
Permutation p-value

When the null distribution of a test statistic is unknown,
resampling methods can be used and a permutation p-value can be
calculated:

1. Define null and alternative hypothesis, choose test statistic.

2. Calculate the test statistic for the original (unpermuted) data.

3. Permute the labels (e.g. “patient” and “control”) and
recalculate the test statistic.

4. Repeat 3 many times. (For an exact
test do all possible permutations or per-
form only a subset of all the permuta-
tions (Monte Carlo test).)
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Null distribution of test statistic

5. Calculate the permutation p-value as (number of
permutations with a more extreme test statistic than original
+ 1)/(number of permutations + 1)
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Hypotheis testing
Permutation p-value

When the null distribution of a test statistic is unknown,
resampling methods can be used and a permutation p-value can be
calculated:

1. Define null and alternative hypothesis, choose test statistic.

2. Calculate the test statistic for the original (unpermuted) data.

3. Permute the labels (e.g. “patient” and “control”) and
recalculate the test statistic.

4. Repeat 3 many times. (For an exact
test do all possible permutations or per-
form only a subset of all the permuta-
tions (Monte Carlo test).)

p=(73+1)/(5000+1) = 0.015
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5. Calculate the permutation p-value as (number of
permutations with a more extreme test statistic than original
+ 1)/(number of permutations + 1)
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Hypothesis testing
Errors

H0 is true H0 is false (H1 is true)

Reject H0
Type I error
false positive

Correct
true positive

Accept H0
Correct

true negative
Type II error
false negative

Significance level:
P(reject H0|H0 is true) = P(type I error) = α

Statistical power:
P(reject H0|H1 is true) = 1− P(type II error) = 1− β
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Power analysis (sample size calculation)

Total number of samples n for the two class problem (equally sized
classes) can be calculated based on the following:

I The significance level, α

I The power, 1− β
I The effect size, δ

I The standard deviation, σ

1Simon R, Dobbin K. Experimental design of DNA microarray experiments.
Biotechniques 34:1-5, 2002
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Power analysis (sample size calculation)
Total number of samples n for the two class problem (equally sized
classes) can be calculated based on the following:

I The significance level, α

I The power, 1− β
I The effect size, δ

I The standard deviation, σ

Assume normal distribution (for larger sample sizes):

n ≈
4(zα/2 + zβ)2

(δ/σ)2
,

where za denote the value along
the x-axis such that the area
under the standard normal curve
to the left of za is a.

Area a
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1Simon R, Dobbin K. Experimental design of DNA microarray experiments.
Biotechniques 34:1-5, 2002
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Power analysis (sample size calculation)

Total number of samples n for the two class problem (equally sized
classes) can be calculated based on the following:

I The significance level, α

I The power, 1− β
I The effect size, δ

I The standard deviation, σ

or use t-distribution (for small sample sizes):

n ≈
4(tα/2 + tβ)2

(δ/σ)2
,

where the t-distribution has n − 2 degrees of freedom.

1Simon R, Dobbin K. Experimental design of DNA microarray experiments.
Biotechniques 34:1-5, 2002

20 / 29



Sample size calculation, example

Let

I α = 0.001 (0.05 is too high if we are testing many genes)

I power 95%, β = 0.05

I σ = 0.5 (should be estimated from previous studies of similar
sample types, use e.g. median over all genes.

I An interesting effect size might be δ = 1 (a 2-fold change if
working on log2-scale).

This gives a total sample size of approximately 29, i.e. 15 samples
per class.
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Sample size calculation, example

α = 0.05 α = 0.001

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25

Total sample size

S
ta

tis
tic

al
 p

ow
er

22 / 29



Multiple testing
Perform one test:

I P(One type I error) = α
I P(No type I error) = 1− α

Perform m independent tests:
I P(No type I errors in m tests) = (1− α)m

I P(At least one type I error in m tests) = 1− (1− α)m
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Multiple testing

FWER family-wise error rate, probability of one or more false
positive, e.g. Bonferroni, Holm

FDR false discovery rate, proportion of false positives among
“hits”, e.g. Benjamini-Hochberg, Storey
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Multiple testing
Bonferroni correction

To achieve a family-wise error rate of ≤ α when performing m
tests, declare significance and reject the null hypothesis for any
test with p ≤ α/m.
Objections: too conservative
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Multiple testing
Benjamini-Hochberg, FDR

H0 is true H0 is false (H1 is true)

Reject H0 FP TP

Accept H0 TN FN

The false discovery rate is the proportion of false positives among
’hits’, i.e. FP

TP+FP .

Benjamini-Hochberg’s method control the FDR level, γ, when
performing m independent tests, as follows:

1. Sort the p-values p1 ≤ p2 ≤ · · · ≤ pm.

2. Find the maximum j such that pj ≤ γ j
m .

3. Declare significance for all tests 1, 2, . . . , j .
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Multiple testing
’Adjusted’ p-values

Sometimes an adjusted significance threshold is not reported, but
instead ’adjusted’ p-values are reported.

I Using Bonferroni’s method the adjusted p-values are:
p̃i = min(mpi , 1).
A feature’s adjusted p-value represents the smallest FWER at which the null

hypothesis will be rejected, i.e. the feature will be deemed significant.

I Benjamini-Hochberg’s ’adjusted’ p-values are called q-values:
qi = min(mi pi , 1)
A feature’s q-value can be interpreted as the lowest FDR at which the

corresponding null hypothesis will be rejected, i.e. the feature will be deemed

significant.
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Multiple testing
’Adjusted’ p-values

Example, 10000 independent tests (genes)

p-value adj p (Bonferroni) q-value (B-H)

1 1.7e-08 0.00017 0.00017
2 5.8e-08 0.00058 0.00029
3 3.4e-07 0.0034 0.0011
4 9.1e-07 0.0091 0.002
5 1e-06 0.01 0.002
6 2.4e-06 0.024 0.004
7 2.3e-05 0.23 0.033
8 3.6e-05 0.36 0.045
9 0.00022 1 0.23

10 0.00023 1 0.23
11 0.00073 1 0.66
12 0.0032 1 1
13 0.0045 1 1
14 0.0087 1 1
15 0.0089 1 1
16 0.012 1 1
17 0.014 1 1
18 0.045 1 1
19 0.08 1 1
20 0.23 1 1
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Questions?
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