
Unix/Linux Tutorial for Beginners
Session VIII

Mihaela Martis

NBIS & Faculty of Medicine and Health Sciences
Division Cell Biology, IKE

Shell scripting

Daily work

• bioinformatics work often involves a great deal of data
processing

• run regularly a sequence of commands on multiple files
• summarize various processing steps into a pipeline
• robust and reproducible pipelines

• errors are easily introduced in the complex processing of
bioinformatics data

• automated pipelines provide a perfect record of exactly how
data was processed

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 2

Shell scripting

Daily work

• bioinformatics work often involves a great deal of data
processing

• run regularly a sequence of commands on multiple files

• summarize various processing steps into a pipeline
• robust and reproducible pipelines

• errors are easily introduced in the complex processing of
bioinformatics data

• automated pipelines provide a perfect record of exactly how
data was processed

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 2

Shell scripting

Daily work

• bioinformatics work often involves a great deal of data
processing

• run regularly a sequence of commands on multiple files
• summarize various processing steps into a pipeline

• robust and reproducible pipelines

• errors are easily introduced in the complex processing of
bioinformatics data

• automated pipelines provide a perfect record of exactly how
data was processed

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 2

Shell scripting

Daily work

• bioinformatics work often involves a great deal of data
processing

• run regularly a sequence of commands on multiple files
• summarize various processing steps into a pipeline
• robust and reproducible pipelines

• errors are easily introduced in the complex processing of
bioinformatics data

• automated pipelines provide a perfect record of exactly how
data was processed

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 2

Shell scripting

Bash scripting

• the shell can be used interactively, but it’s also a full-fledged
scripting language

• used to tape many commands together into a cohesive
workflow

• useful for simple tasks → does not replace the knowledge of
other programing languages

• it lacks better numeric type support, useful data structures,
better string processing, powerful functions ...
→ often the best and quickest ’duct tape’ solution

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 3

Shell scripting

Bash scripting

• the shell can be used interactively, but it’s also a full-fledged
scripting language

• used to tape many commands together into a cohesive
workflow

• useful for simple tasks → does not replace the knowledge of
other programing languages

• it lacks better numeric type support, useful data structures,
better string processing, powerful functions ...
→ often the best and quickest ’duct tape’ solution

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 3

Shell scripting

Bash scripting

• the shell can be used interactively, but it’s also a full-fledged
scripting language

• used to tape many commands together into a cohesive
workflow

• useful for simple tasks → does not replace the knowledge of
other programing languages

• it lacks better numeric type support, useful data structures,
better string processing, powerful functions ...

→ often the best and quickest ’duct tape’ solution

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 3

Shell scripting

Bash scripting

• the shell can be used interactively, but it’s also a full-fledged
scripting language

• used to tape many commands together into a cohesive
workflow

• useful for simple tasks → does not replace the knowledge of
other programing languages

• it lacks better numeric type support, useful data structures,
better string processing, powerful functions ...
→ often the best and quickest ’duct tape’ solution

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 3

Shell scripting

The shell script

• is a text file that contains a sequence of shell commands and
which can be invoked as a program

• can be created in your favorit text editor
• by convention, it has the extension .sh
• consists of 2 parts: the shell header (shebang) and the body

(commands)

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 4

Shell scripting

The shell script header

#!/ bin / bash
set -e
set -u

• #!/bin/bash → shebang – indicates the path to the
interpreter used to execute the script

• set -e → terminates the entire script if any command exits
with a nonzero exit status

• set -u → avoids running a script, if a variable’s value is unset

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 5

Shell scripting

The shell script body

• describes ’what to do and how to do it’
• defines variables
• lists the commands, which should be executed by the shell
• the shell processes the body sequentially

path="/home/duck/data/ fasta /"

echo "List the content of the folder $path "
echo " Content :"
ls -l $path

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 6

Shell scripting

How to run a shell script

1. give the script execute permissions

$ chmod u+x myFirstScript .sh
$ chmod 755 myFirstScript .sh

2. execute your script

$ bash myFirstScript .sh

or
$ sh myFirstScript .sh

or
$./ myFirstScript .sh

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 7

Shell scripting

How to run a shell script

1. give the script execute permissions

$ chmod u+x myFirstScript .sh
$ chmod 755 myFirstScript .sh

2. execute your script

$ bash myFirstScript .sh

or
$ sh myFirstScript .sh

or
$./ myFirstScript .sh

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 7

Shell scripting

Example: myFirstScript.sh

#!/ b in / bash
s e t −e
s e t −u

path="/home/ mihae l a / data / f a s t a /"

echo " L i s t the co n t en t o f the f o l d e r $path "
echo " Content : "
l s − l $path

$. / m y F i r s t S c r i p t . sh
L i s t the c on t e n t o f the f o l d e r /home/ mihae l a / data / f a s t a /
Content :
t o t a l 118228

−rwxr−xr−x 1 mihae l a r o o t 17808819 Mar 22 13 :10 ZMpep . bz2
−rwxr−xr−x 1 mihae l a r o o t 32247082 Mar 22 13 :10 barley_CDS . f a
−rwxr−xr−x 1 mihae l a r o o t 42843621 Mar 22 13 :10 brachy_CDS . f a
drwxr−xr−x 2 mihae l a r o o t 78 Mar 22 13 :10 s u b s e t

−rwxr−xr−x 1 mihae l a r o o t 28162050 Mar 22 13 :10 wheat_PEP . f a

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 8

Shell scripting

Write your first shell script

• go to folder scripts in your home directory
$ cd ~/ myLinuxProject / scripts

• open a text editor
$ nano
or
$ vi

• type the shebang
#!/ bin / bash
set -e
set -u

• write the command
echo "This is my first shell script "

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 9

Shell scripting

Write your first shell script

• go to folder scripts in your home directory
$ cd ~/ myLinuxProject / scripts

• open a text editor
$ nano
or
$ vi

• type the shebang
#!/ bin / bash
set -e
set -u

• write the command
echo "This is my first shell script "

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 9

Shell scripting

Write your first shell script

• go to folder scripts in your home directory
$ cd ~/ myLinuxProject / scripts

• open a text editor
$ nano
or
$ vi

• type the shebang
#!/ bin / bash
set -e
set -u

• write the command
echo "This is my first shell script "

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 9

Shell scripting

Write your first shell script

• go to folder scripts in your home directory
$ cd ~/ myLinuxProject / scripts

• open a text editor
$ nano
or
$ vi

• type the shebang
#!/ bin / bash
set -e
set -u

• write the command
echo "This is my first shell script "

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 9

Shell scripting

Write your first shell script (II)

• save the file under the name myFirstShellScript.sh

• set the permissions

$ chmod u+x myFirstShellScript .sh

• execute the script

$./ myFirstShellScript .sh
This is my first shell script

→ CONGRATULATIONS TO YOUR FIRST SHELL SCRIPT!

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 10

Shell scripting

Write your first shell script (II)

• save the file under the name myFirstShellScript.sh
• set the permissions

$ chmod u+x myFirstShellScript .sh

• execute the script

$./ myFirstShellScript .sh
This is my first shell script

→ CONGRATULATIONS TO YOUR FIRST SHELL SCRIPT!

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 10

Shell scripting

Write your first shell script (II)

• save the file under the name myFirstShellScript.sh
• set the permissions

$ chmod u+x myFirstShellScript .sh

• execute the script

$./ myFirstShellScript .sh
This is my first shell script

→ CONGRATULATIONS TO YOUR FIRST SHELL SCRIPT!

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 10

Shell scripting

Write your first shell script (II)

• save the file under the name myFirstShellScript.sh
• set the permissions

$ chmod u+x myFirstShellScript .sh

• execute the script

$./ myFirstShellScript .sh
This is my first shell script

→ CONGRATULATIONS TO YOUR FIRST SHELL SCRIPT!

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 10

Shell scripting

Variables

• allow to store information and do something with it
• you can store input files, parameter values for commands,

results directories ...
• syntax: variable_name=value
• 2 types:

• system variables → created and maintained by the operating
system itself

• defined in CAPITAL LETTERS
• e.g. BASH=/bin/bash, HOME=/home/duck

• user defined variables (UDV) → created and maintained by the
user
→ defined in lowercase letters

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 11

Shell scripting

Variables

• allow to store information and do something with it
• you can store input files, parameter values for commands,

results directories ...
• syntax: variable_name=value
• 2 types:

• system variables → created and maintained by the operating
system itself

• defined in CAPITAL LETTERS
• e.g. BASH=/bin/bash, HOME=/home/duck

• user defined variables (UDV) → created and maintained by the
user
→ defined in lowercase letters

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 11

Shell scripting

Variables

• allow to store information and do something with it
• you can store input files, parameter values for commands,

results directories ...
• syntax: variable_name=value
• 2 types:

• system variables → created and maintained by the operating
system itself

• defined in CAPITAL LETTERS
• e.g. BASH=/bin/bash, HOME=/home/duck

• user defined variables (UDV) → created and maintained by the
user
→ defined in lowercase letters

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 11

Shell scripting

Rules

• variable name must begin with alphanumeric character or
underscore character (_)

• don’t put spaces on either side of the equal sign when
assigning a value to variable

• variables are case-sensitive
• don’t use ? or * to name your variables
• add a ’$’ in front of a variable name to access its value

#!/ bin / bash
set -e
set -u

results =/ home/duck/ results
mkdir -p $results

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 12

Shell scripting

Command substitution

• use the command substitution $() to run a shell command
and store the output to a variable

• usage: var=$(command)

path= $HOME /data/ fasta / mySeq .fa
command_out =$(basename $path)
echo $command_out

• $HOME is an alias for ∼ (tilde) and stores the path to the
user’s home

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 13

Shell scripting

Quoting

• Bash splits up the input in words using the whitespace
between them to determine where each argument starts and
ends

• quotes keep your strings in one piece → pass the whole string
as one argument

• double quotes (") vs single quotes (’)

• enclosing simple text → no difference which you use
• shell variable expansion → double quotes (") allow expansion

of variables, single quotes (’) don’t
test =" Hello World "
echo $test

Hello World
echo " $test "

Hello World
echo '$test '

$test

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 14

Shell scripting

Quoting

• Bash splits up the input in words using the whitespace
between them to determine where each argument starts and
ends

• quotes keep your strings in one piece → pass the whole string
as one argument

• double quotes (") vs single quotes (’)
• enclosing simple text → no difference which you use

• shell variable expansion → double quotes (") allow expansion
of variables, single quotes (’) don’t

test =" Hello World "
echo $test

Hello World
echo " $test "

Hello World
echo '$test '

$test

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 14

Shell scripting

Quoting

• Bash splits up the input in words using the whitespace
between them to determine where each argument starts and
ends

• quotes keep your strings in one piece → pass the whole string
as one argument

• double quotes (") vs single quotes (’)
• enclosing simple text → no difference which you use
• shell variable expansion → double quotes (") allow expansion

of variables, single quotes (’) don’t
test =" Hello World "
echo $test

Hello World
echo " $test "

Hello World
echo '$test '

$test

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 14

Shell scripting

Comments

• comments make your life easier → reflect what the script does
and which data was used

• comments start with a hash mark ’#’
• the shell ignores lines starting with a # and they are only

visible upon opening the file
#!/ b in / bash
s e t −u
s e t −e
This s c r i p t s c l e a r s the t e r m i n a l and d i s p l a y s a g r e e t i n g

c l e a r # c l e a r t e r m i n a l window
echo " H e l l o wor ld ! "

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 15

Shell scripting

Command-line arguments

• shell script can take arguments from the command-line
• those are assigned to the values $1, $2 etc
• $0 stores the name of the script
• $# contains the number of arguments

#!/ b in / bash
s e t −e
s e t −u

echo " number o f arguments : $#"
echo " s c r i p t name i s : $0 "
echo " f i r s t argument i s : $1 "
echo " second argument i s : $2 "

$. / m y F i r s t S c r i p t . sh H e l l o wor ld
number o f arguments : 2
s c r i p t name i s : m y F i r s t S c r i p t . sh
f i r s t argument i s : H e l l o
second argument i s : wor ld

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 16

Shell scripting

Command-line arguments

• shell script can take arguments from the command-line
• those are assigned to the values $1, $2 etc
• $0 stores the name of the script
• $# contains the number of arguments

#!/ b in / bash
s e t −e
s e t −u

echo " number o f arguments : $#"
echo " s c r i p t name i s : $0 "
echo " f i r s t argument i s : $1 "
echo " second argument i s : $2 "

$. / m y F i r s t S c r i p t . sh H e l l o wor ld
number o f arguments : 2
s c r i p t name i s : m y F i r s t S c r i p t . sh
f i r s t argument i s : H e l l o
second argument i s : wor ld

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 16

Shell scripting

Command-line arguments

• shell script can take arguments from the command-line
• those are assigned to the values $1, $2 etc
• $0 stores the name of the script
• $# contains the number of arguments

#!/ b in / bash
s e t −e
s e t −u

echo " number o f arguments : $#"
echo " s c r i p t name i s : $0 "
echo " f i r s t argument i s : $1 "
echo " second argument i s : $2 "

$. / m y F i r s t S c r i p t . sh H e l l o wor ld
number o f arguments : 2
s c r i p t name i s : m y F i r s t S c r i p t . sh
f i r s t argument i s : H e l l o
second argument i s : wor ld

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 16

Shell scripting

Shell arithmetic

• arithmetic expansion and evaluation is done by placing an
integer expression using the following format:

$ ((e x p r e s s i o n))
$ ((n1 + n2))
$ ((n1 / n2))
$ ((n1 − n2))
$ ((n1 ∗ n2))

• examples:
#!/ b in / bash

x=5
y=10
ans=$ ((x + y))
echo " $x + $y = $ans "

echo $ ((10 + 5))

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 17

Shell scripting

Shell arithmetic II

• bash arithmetic works only with integer
#!/ b in / bash
s e t −e
s e t −u

x =5.5
y=10

r e s=$ ((x + y))
echo " $x + $y = $ r e s "

$. / myMath . sh
. / myMath . sh : l i n e 5 : 5 . 5 : s y n t a x e r r o r : i n v a l i d a r i t h m e t i c o p e r a t o r (e r r o r

token i s " . 5 ")
. / myMath . sh : l i n e 8 : r e s : unbound v a r i a b l e

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 18

Shell scripting

Interactive shell scripts

• scripts can ask questions, and get and use responses
• read → takes input from the keyboard and assigns it to a

variable

#!/ bin / bash
set -u
set -e

echo -n " Enter your name > "
read name
echo "You entered : $name "

echo -n keeps the cursor on the same line

./ read_demo .sh
Enter your name > Kurt
You entered : Kurt

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 19

Shell scripting

read options

• -t followed by a number – provides an automatic timeout for
the read command (in seconds)

#!/ bin / bash
set -u
set -e

echo -n " Hurry up and type something ! >"
if read -t 3 response ; then

echo "Great , you made it in time!"
else

echo "Sorry , you are too slow!"
fi

• -s – causes the user’s typing not to be displayed

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 20

Shell scripting

Pair exercises

• find a partner for the next exercise session
• aim: learn to transfer taught commands to basic shell scripts
• we will use some of the exercises from session 5
• the tasks can be found on the e-learning platform under

session 8

Mihaela Martis Unix/Linux Tutorial for Beginners Session VIII 21

	Shell scripting

