Unix/Linux Tutorial for Beginners Session V

Mihaela Martis

NBIS & Faculty of Medicine and Health Sciences Division Cell Biology, IKE

Today's schedule

Evolution

EVOLUTION OF LANGUAGE THROUGH THE AGES.

Shell commands

Filesystem	Text processing	Filters	Documentation	Editors	I/O redirection
cat	basename	grep	help	nano	>
cd	cut		man	vi	>>
ср	dirname				<
file	head				<<
ls	less				
mv	sed				
mkdir	sort				
pwd	tail				
rm	tr				
rmdir	uniq				
touch	WC				
tree					

Pair exercises - guidance

- 1. say hello to your next neighbor $\bigcirc \rightarrow$ he/she will be your partner for the next exercises
- 2. the remote participants will work alone \rightarrow use the chat/video conference to communicate with each other
- you need only the terminal integrated in the e-learning platform
- 4. solve the tasks by combining the commands taught yesterday
- 5. the exercises can be found on the e-learning platform under session 5

Pair exercises - guidance

- 1. say hello to your next neighbor $\textcircled{O} \rightarrow$ he/she will be your partner for the next exercises
- 2. the remote participants will work alone \rightarrow use the chat/video conference to communicate with each other
- you need only the terminal integrated in the e-learning platform
- 4. solve the tasks by combining the commands taught yesterday
- 5. the exercises can be found on the e-learning platform under session 5

There's more than one way to skin a cat!

Practical examples

- 1. reverse complement a fasta file
- 2. transform lower case nucleotides to upper case nucleotides in a fasta file
- 3. extract sequences from a FASTA file based on supplied identifier
- 4. count the number of reads in a FASTQ file
- 5. convert a FASTQ file to a FASTA file
- 6. determine all feature types annotated in a GFF file
- 7. determine the number of genes annotated in a GFF3 file

Reverse complement a fasta file

```
$ paste -d "\n" <(grep ">" myCDS.fa | rev | tr "acgtACGT" "
    tgcaTGCA") >myCDS_revCompl.fa
```

1. extract the sequence identifier:

\$ grep ">" myCDS.fa

2. reverse complement the sequences:

\$ grep -v ">" myCDS.fa | rev | tr "acgtACGT" "tgcaTGCA"

combine the outcome from step 1) and 2) using the command paste

4. redirect the output to a file

Transform all lower case nucleotides to upper case nucleotides

\$ paste -d "\n" <(grep ">" myCDS_revCompl.fa) <(grep -v ">" myCDS_revCompl.fa tr "a-z" "A-Z") >myCDS_revCompl_lc.fa

1. extract the sequence identifier

```
$ grep ">" myCDS_revCompl.fa
```

2. transform lower case nucleotides to upper case nucleotides

\$ grep -v ">" myCDS_revCompl.fa | tr "a-z" "A-Z"

3. combine the outcome from step 1) and 2)

4. redirect the output to a new file

\$ paste -d "\n" <(grep ">" myCDS_revCompl.fa) <(grep -v ">" myCDS_revCompl .fa | tr "a-z" "A-Z") >myCDS_revCompl_lc.fa

Extracting sequences from a Fasta file based on supplied IDs

1. extract 7 sequence identifiers from the file barley_CDS.fa

\$ grep ">" barley_CDS.fa | tr -d '>' | head -7 > mylds.txt

 extract for these identifiers the sequences from the file barley_CDS.fa

\$ grep -A1 -F -f mylds.txt barley_CDS.fa | tr -d '-' > my_seq_ids.fa
OR
\$ grep -A1 -F -f mylds.txt barley_CDS.fa | grep -v '^--\$' > my_seq_ids.fa

grep -F – fixed strings grep -A1 – print matching line plus the next line

How many reads are in a fastq file?

\$ cat DRR001013.fastq | echo \$(('wc -l'/4))

 \rightarrow works only with 'back-ticks'

Convert FASTQ to FASTA

 $d_{n} = 1^{-n} - 1^{-4} s / ^0 / p; 2^{-4} p' DRR001013.fastq > DRR001013.fasta$

- M~N with p prints every N'th line starting with line first
- -n suppress automatic printing of pattern will not print anything, unless an explicit request to print is found

Determine all feature types annotated in a GFF file

grep -v "^#" Pygoscelis_adeliae.gff | cut -s -f 3 | sort | uniq

Determine the number of genes annotated in a GFF3 file

grep -c \$'\tmRNA\t' Pygoscelis_adeliae.gff