Unix/Linux Tutorial for Beginners Session I

Mihaela Martis

NBIS & Faculty of Medicine and Health Sciences Division Cell Biology, IKE

Software/Hardware check

- can everyone hear me?
- can everyone see the slides?

this course is a joint effort of SciLifeLab, NBIS, • and University of Ljubljana:

- this course is a joint effort of SciLifeLab, NBIS, and University of Ljubljana:
 - Elixir \rightarrow European life-science infrastructure, which coordinates, integrates and sustains bioinformatics resources

- this course is a joint effort of SciLifeLab, NBIS, and University of Ljubljana:
 - Elixir \rightarrow European life-science infrastructure, which coordinates, integrates and sustains bioinformatics resources
 - University of Ljubljana → provides tools infrastructure, data resources, and compute and training provision for specific biological domains

- this course is a joint effort of SciLifeLab, NBIS, and University of Ljubljana:
 - Elixir \rightarrow European life-science infrastructure, which coordinates, integrates and sustains bioinformatics resources
 - University of Ljubljana → provides tools infrastructure, data resources, and compute and training provision for specific biological domains
 - NBIS \rightarrow provides bioinformatics support services, training events, and computational ressources

- this course is a joint effort of SciLifeLab, NBIS, and University of Ljubljana:
 - Elixir \rightarrow European life-science infrastructure, which coordinates, integrates and sustains bioinformatics resources
 - University of Ljubljana → provides tools infrastructure, data resources, and compute and training provision for specific biological domains
 - NBIS \rightarrow provides bioinformatics support services, training events, and computational ressources
 - SciLifeLab \rightarrow national center for molecular biosciences with focus on health and environmental research

Website

AJ

⊢ ⇒ ⊂ www.elixir-europe.org

About us Services Platforms Use Cases Events News Intranet

ELIXIR A distributed infrastructure for life

ELUXIR unites Europe's leading life science organisations in managing and safeguarding the increasing volume of data being generated by publicly funded research. It coordinates, integrates and suitabins bioinformatics resources across its member states and enables users in academia and industry to access services that are vital for their research. See About use

bout us	ELIXIR Slovenia	Map Saratita
Why ELDGR is needed	Visit ELIXIR Slovenia	2
Alto we are		and many
ELIXIR Hub	The ELDCR Node is a national platform, providing data resources, compute and training provision, and tools infrastructure for	rights Ka
ELIXIR Nodes	specific biological domains. University of Ljubljana Faculty of Medicine is coordinating activities of the Slovenian Node, which	Lubya
How countries join	is represented by the Centre for Functional Genomics and Bio- Chips (CFGBC), a 16-member consortium of academia.	Sec.
abot we do	chips (Crubc), a 10-member consorbum of academia,	Stan Sales

www.scilifelab.se

Mihaela Martis

Umeå

Allison Churcher

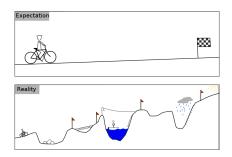
Ljubljana

Aleš Papič

Patrik Pušnik

Jure Dimec

The participants


- 41 participants from 12 universities in 8 cities
- 30 participants in 3 classrooms:
 - TA in Ljubljana: Aleš & Patrik
 - TA in Umeå: Jeanette
 - TA in Linköping: Mihaela
- 11 remotely connected participants:
 - TA: Allison (Monday), Malin (Tuesday, Wednesday)

Getting Started	History & Terms	Examples	Help	File formats
	Т	ne goals		

The goals

- Become familiar with the Unix/Linux operating system.
- Get comfortable with the command-line environment
- Learn powerful commands to process/explore your data.
- Be able to find documentation about individual commands.

The expectations

- will not cover bioinformatics tools
- frustration
- the exercises have some overhead, it's not expected that you do all
- keep playing to get proficient

What do you need to do before we start?

1. start your computer

What do you need to do before we start?

- 1. start your computer
- 2. open the e-learning platform:

https://elixir.mf.uni-lj.si/course/view.php?id=17

Unix/Linux Iutoria	I for Beg	jinners 2	
Home > Counses > ulti-2 > Enricher	et options		
NAVISATION ID:0 How	22	Enrolment options	
		© UnixULinux Tutorial for Beginners 2 Taster Allas Cauter Taster Marchanon Taster Allas Lodal Taster Allas Unital Taster Allas Mark	الكرية التركيم سمعة المركيمة 27-29 Mar 2017, Linköping & Umeå, SE; Ljubljana, SI
		Guesds connect access this course. Piessee log in.	Contrue

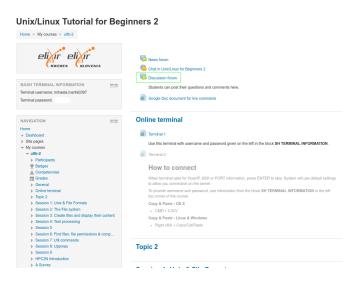
What do you need to do before we start?

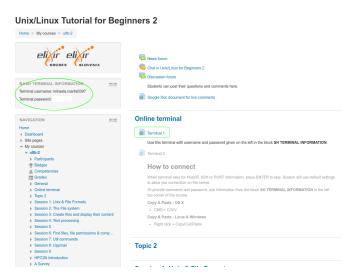
- 1. start your computer
- 2. open the e-learning platform:

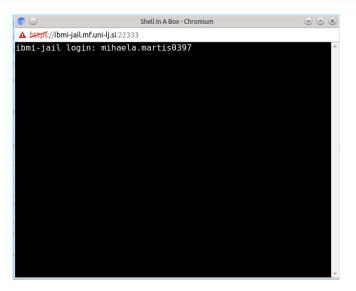
https://elixir.mf.uni-lj.si/course/view.php?id=17

nix/Linux luto		
MV95A710N	 Enrolment options	
Sin pages Courses + still-2	© Unix/Linux Tutorial for Beginners 2 Tachet Allas Chuchar Tachet Nilli Lanco Tachet Nillis Uchal Tachet Nilliss Uchal Tachet Nilliss Uchal	
	reares associa rangea	27-29 Mar 2017, Linköping & Umeå, SE; Ljubljana, SI
	Quests connot access this course. Please log in.	

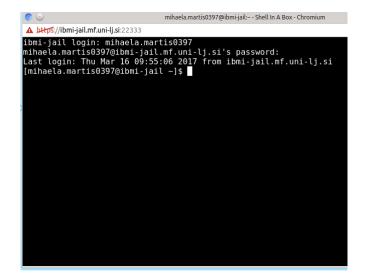
3. log in to the platform

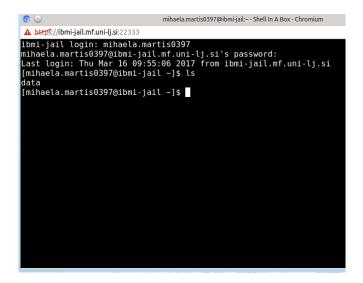

- Copy & Paste OS X
- CMD + C/X/V
- Copy & Paste Linux & Windows
- · Right click + Copy/Cut/Paste


Topic 2


Session 1: Unix & File Formats

S1: Slides
 S1: Mandatory exercises
 S1: Optional exercises


nux Tutorial for Beginners	2
Cawenen Calovenia	News forum And in UnixUnux for Beginners 2 Audorba can poor their questions and comments here. Joogle Doc document for live comments
o onlin	ne terminal
💽 Te	erminal 1
U:	se this terminal with username and password given on the left in the block SH TERMINAL INFORMATION.
	eminal 2
pants	
E E	low to connect
stendies	
	When terminal asks for Host/IP, SSH or PORT information, press ENTER to skip. System will use default settings a allow you connection on the server.
	o provide username and password, use information from the block SH TERMINAL INFORMATION in the left
	o provide username and password, use miormation from the block on TERMINAL INFORMATION in the left op corner of the course.
	copy & Paste - OS X
	• CMD + C/X/V
n 2: Create files and display their content	copy & Paste - Linux & Windows
n 4: Text processing	 Right click + Copy/Cut/Paste
n 5	 right block + copyrobil-rasid
n 6: Find files, file permissions & comp	
n 7: Util commands	
	32
n 7: Uti commands n 8: Upmax Topic n 9 Vitroduction 6y	2



The terminal

The terminal

What should be now open on your computer?

- video-conference (pexip only for the remote participants)
- e-learning platform
- terminal
- chat

Today's schedule

The course material (slides & exercises) are in part derived from, or inspired by, third-party material and adapted for this course. I like to give credit to the following persons and institutions:

- ©Software Carpentry ¹
- Martin Dahlö (NBIS)
- Vince Buffalo, Bioinformatics Data Skills
- Lauren Mills, Common File Formats, *Current Protocols in Bioinformatics* A.1B.1-A.1B.18, March 2014

¹http://software-carpentry.org, license: CC BY 4.0

Tasks of a computer

- run programs
- store data
- communicate with each other
- interact with us

Tasks of a computer

Oprocreatinating over the second seco

- run programs
- store data
- communicate with each other
- interact with us

Operating system (OS)

• is a collection of software that manages the hardware, the communication between programs, as well as the network communication with other systems

 \rightarrow the computer program that starts when you turn on the computer

Components of an operating system

- kernel \rightarrow has complete control over the computer's resources (i.e. CPU, memory, input/output devices)
- utilities \rightarrow small programs and system libraries helping to manage the system and hardware
- user interfaces \rightarrow enable users to interact with computers
 - keybord
 - graphical user interface (GUI)
 - command-line interface (CLI)

Getting Started	History & Terms	Examples	Help	File formats
	Wha	t is Unix?		

- is a family of operating systems
- born in the beginning of the 70s at AT&T Bell Labs
- distributed under license to universities, US goverment & companies
- different types of UNIX:
 - Solaris (proprietary) solaris
 - MacOS X (proprietary) 觉
 - Linux (free) Å

Getting Started	History & Terms	Examples	Help	File formats
		Linux		

- is a free (Unix-like) operating system based on the Linux kernel
- 1991, Linus Torvalds (University of Helsinki)
- source codes are free for all to copy, to study, to change and to share with others
- used for many computing platforms, like PC, supercomputers, smartphones (Android is based on the Linux kernel)

Unix/Linux benefits

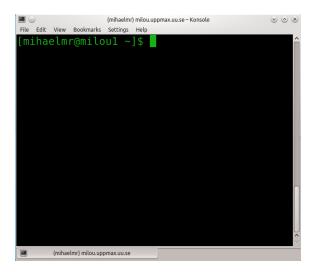
- $stable \rightarrow$ famous for running months, or even years without crashing, freezing, or having to be rebooted
- $\mathit{secure} \to \mathsf{supports}$ effective means to secure a system and prevent unauthorized access
- *fast* \rightarrow the OS is very efficient at managing resources such as memory, CPU power, and disk space
- $\mathit{networking} \rightarrow \mathsf{the}$ network is central for remote access and computation
- $\textit{multi-user} \rightarrow \textit{different}$ users can connect at the same server and work at the same time
- $\textit{multi-tasking} \rightarrow \text{several programs can run on the same server at the same time}$

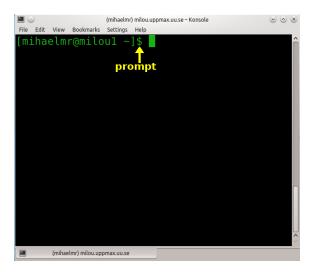
Command-line interface

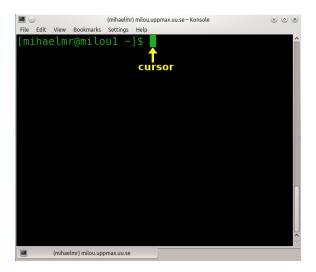
- in the 70s GUIs were not available \rightarrow computers were controlled with text commands through a CLI
- allows the direct interaction with the computer by typing in commands (instructions) into a screen
 - ightarrow a conversation between user and computer
- text-based, accurate and efficient
- needs less hardware resources
- xterm, console, terminal \rightarrow terminal emulators, programs that put an all-text mode window up and let the user interact with the shell

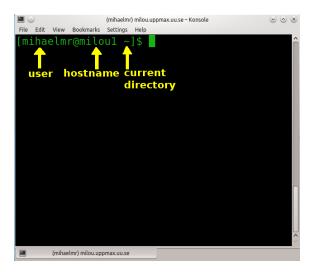
Getting Started	History & Terms	Examples	Help	File formats
	Т	he shell		

- command-line interpretor (CLI) \rightarrow a program, which mediate between the user and the OS
- read-evaluate-print loop:

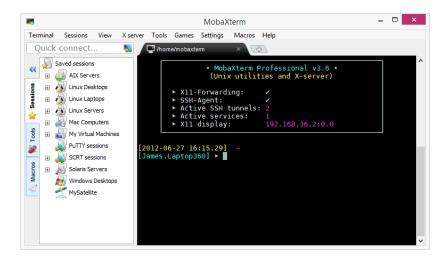

 lots of different command line shells exist, with different features and facilities


Common Shells


- Windows
 - DOS/Command Prompt
 - PowerShell
- Bourne shell (sh) the original UNIX shell
- Bourne-Again shell (bash) tends to be the LINUX and MAC OS X standard shell
- C shell (csh) syntax related to the C programming language


Common Shells

- Windows
 - DOS/Command Prompt
 - PowerShell
- Bourne shell (sh) the original UNIX shell
- Bourne-Again shell (bash) tends to be the LINUX and MAC OS X standard shell
- C shell (csh) syntax related to the C programming language
- Case sensitive



MobaXterm shell window

Windows command prompt

 \rightarrow 'cmd' is the command line interface for Windows, offering a DOS-like environment.

Why use the command line/shell?

- programming language features \rightarrow conditional expressions, loops, variables
- shell commands can be combined into $\textbf{scripts} \rightarrow \texttt{automate}$ processes
- easiest way to interact with remote machines and supercomputers (e.x. Uppmax)
- provides a history of executed commands
- interactive use
 - manage files and directories
 - find, run, and control commands/programs/processes

What is a command?

- is an instruction typed in at the command line and processed by the shell
- commands are either
 - external \rightarrow executable programs written in a programming language (e.x. Fastqc)
 - built-in ightarrow are part of the shell (e.x. cd)
- are roughly the same in any Linux distribution
- syntax: command [options] [arguments]

Help

Command line structure

- command name specifies the basic operation required e.g. dir,cd,ls
- command arguments specifies what to work on (e.x. names of files)

e.g. lpr myfile.txt (\rightarrow print myfile.txt)

- command options specifies how to work is to be done
 - e.g. ls -l -a (\rightarrow list file details, including hidden files)

Command syntax conventions

Syntax	Description	Example
brackets []	the information enclosed is optional	[-h host_location]
braces {}	a set of mutually exclusive options	$\{ \text{-I IP} \mid \text{-n hostname} \}$
vertical bar	separates mutually exclusive options	{-I IP -n hostname}
<>	placeholder, replace with appropriate value	<username></username>

Good to know

- commands are **case sensitive** (image.jpg \neq Image.JPG)
- **autocompletion** \rightarrow write the first letters and type the

- navigate in the commands historical
- $\overleftarrow{\leftarrow}$, $\overrightarrow{\rightarrow}$ move the cursor back or forth along the current command line
- Ctrl a, Ctrl e move the cursor to beginning/end of command line
- [Ctrl] \leftarrow / \rightarrow move from one word to another

First simple commands

- whoami print the user's login name
- finger user_name system info about a user
- hostname print the name of the local host
- date print the operating system date and time
- pwd display the name of the current directory
- who determine the users logged on the machine

Getting Started	History & Terms	Examples	Help	File formats
	Practi	cal example		

• 'goslim.txt' \rightarrow list of Arabidopsis identifier associated with GO-terms

AT1G01010 GD:0005634 GD:0005634 GD:0007275 AT1G01020 GD:0032541 GD:0004525 GD:0006665 GD:0097036 AT1G01030 GD:0003700 GD:0005634 AT1G01040 GD:0004525 GD:0035279 ...

tasks:

- How many genes are in the file?
- How many different GO-terms are in the file?
- How many of these are shared by different genes?
- Find the three most frequent GO-terms!

Unix/Linux solution I

• How many genes are in the file?

```
$ wc -l goslim.txt
30485 goslim.txt
$ grep -c "^" goslim.txt
30485
```

Unix/Linux solution I

• How many genes are in the file?

```
$ wc -l goslim.txt
30485 goslim.txt
$ grep -c "^" goslim.txt
30485
```

• How many different GO-terms are in the file?

```
 true for the second state <math display="inline">true for the second state <math display="inline">true for the second state s
```

Unix/Linux solution II

• How many of these are shared/not shared by different genes?

\$ cat goslim.txt|sed 's/ /\n/g'|grep "^GO:"|sort|uniq -d|wc -1
5268
\$ cat goslim.txt|sed 's/ /\n/g'|grep "^GO:"|sort|uniq -u|wc -1
1047

Unix/Linux solution II

• How many of these are shared/not shared by different genes?

```
$ cat goslim.txt|sed 's/ /\n/g'|grep "^GO:"|sort|uniq -d|wc -1
5268
$ cat goslim.txt|sed 's/ /\n/g'|grep "^GO:"|sort|uniq -u|wc -1
1047
```

• Find the three most frequent GO-terms!

```
$ cat goslim.txt|tr " " \n"|grep "^GO:"|sort|uniq -c|sort -nr|head -3
15527 GO:0005634
9983 GO:0003674
9318 GO:0008150
```

Getting Started	History & Terms	Examples	Help	File formats
		in detail		

\$ cat goslim.txt | tr " " \n grep GO: | sort | uniq -c | sort -nr | head -3

 $\mathsf{cat} \to \mathsf{reads} \ \mathsf{data} \ \mathsf{from} \ \mathsf{the} \ \mathsf{file}, \ \mathsf{and} \ \mathsf{outputs} \ \mathsf{the} \ \mathsf{content}$

- |
 ightarrow pass the output from one program to the input of another one
- $\mathsf{tr} \to \mathsf{transform}$ one pattern into another one
- $\mathsf{grep} \to \mathsf{search}$ for patterns and display the result lines
- $\mathsf{sort} \to \mathsf{sort}$ the data
- uniq \rightarrow remove duplicates
- head \rightarrow display the first 3 lines

Getting Started	History & Terms	Examples	Help	File formats
	Г:	u al la alua		

Find help

- problems with the UNIX commands:
 - use the command man
 - use a search engine (e.g. Google)
 - ask someone with more experience
- bioinformatics problems:
 - seqanswers.com
 - biostars.org

The man command

usage: man <command>

```
$ man whoami
NAME
whoami - print effective userid
SYNOPSIS
whoami [OPTION] ...
DESCRIPTION
Print the user name associated with the current
effective user ID
--help display this help and exit
--version output version information and exit
AUTHOR
Written by Richard Mlynarik
```

The *help* command

- displays brief summaries of shell builtin commands
- usage: help <options> <command>
- -d output short description for each topic

```
$ help -d cd
cd - Change the shell working directory
```

-s – output only a short usage synopsis

\$ help -s cd cd: cd [-L|[-P [-e]]] [dir]

Getting Started	History & Terms	Examples	Help	File formats
	Su	immary		

- UNIX is a family of operating systems (OS)
- **UNIX/Linux** OS can manage multiple users, multiple tasks, and networting
- The shell (Command Line Interpretor) is a program that reads commands typed into a console/terminal and executes them
- A **command** is an instruction typed in at the command line • and processed by the shell

Getting Started	History & Terms	Examples	Help	File formats
	_			

Bioinformatics file formats

- flat files \rightarrow simple ASCII text files that contain data in a certain format
 - data files \rightarrow complete sets of sequence and annotation data
 - alignment files \rightarrow alignments created by pair-wise or multiple genome alignment programs
 - annotation files \rightarrow sequence coordinates and diverse annotations on those coordinates

Data formats	Alignment formats	Annotation formats
FASTA	SAM/BAM	GFF3/GTF
FASTQ	MAF	VCF
GenBank	Stockholm	BED
EMBL		WIG

- one of the simplest and most flexible file formats
- used to store sequences and their accession/description (e.g. CDS, proteins, reference genomes, transcript sequences)
- each sequence entry
 - description line, begins with a '>' sign
 - sequence line

>sp|P42645|14335_ARATH 14-3-3-like protein GF14 OS=At MSSDSSREENVYLAKLAEQAERYEEMVEFMEKVAKTVETEELTVEERNLLSVAYKNVIGA RRASWRIISSIEQKEDSRGNSDHVSIIKDYRGKIETELSKICDGILNLLEAHLIPAASLA ESKVFYLKMKGDYHRYLAEFKTGAERKEAAESTLVAYKSAQDIALADLAPTHPIRLGLAL NFSVFYYEILNSSDRACSLAKQAFDEAISELDTLGEESYKDSTLIMQLLRDNLTLWTSDL NDEAGDDIKEAPKEVQKVDEQAQPPPSQ

Fasta format particularities

- no standard specification for the identifier format in the description line
- sequence written in IUPAC single-letter code
- an '*' in a protein sequence indicates a translation stop
- lowercase letters indicate regions of low complexity or repeats

Database	Identifier syntax	Example
NCBI	gi accession:locus	>gi 240256493:c5245820-5243745
NCBI RefSeq	gi accession ref accession	>gi 320461685 ref NM_001202423.1
Swiss-Prot	sp accession name	>sp P42645 14335_ARATH
TrEMBL	tr accession name	>tr A8MUZ1 A8MUZ1_HUMAN
ENA	ENA accession name	>ENA AAH24005 AAH24005.1
ENSEMBL	accession	>TRMT1L-003

Common naming convention

- don't separate '>' and identifier by a space ('>+D')
- split the description line into 2 parts: the identifier and the comment separated by a white space

>gene_00234544 length=231;type=dna GAGAACTGATTCTGTTACGCGCGGAGAACTGATTCTGTTACGCGCGCTTCT

• use unique ID

File extension	Meaning
.fasta/.fa/.fas	generic fasta
.fna	fasta nucleic acid
.ffn	fasta nucleotide of gene regions
.faa	fasta amino acid
.frn	fasta non-coding RNA

FASTQ format

- used to store high-throughput sequencing data
- extends the FASTA format by including a numeric quality score to each base
- consists of four parts:
 - description line, beginning with '@'
 - raw sequence in IUPAC
 - a '+' placeholder line
 - quality score

```
@DJB775P1:248:DOMDGACXX:7:1202:12362:49613
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
 ''*(((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCC65
```

Getting Started	History & Terms	Examples	Help	File formats
	Qua	lity scores		

- reflect the probability that a base call was incorrect
- calculated as Phred quality scores: PhredQ = -10log(p)
- higher Q scores indicate a smaller probability of error

Quality score	Error probability	Accuracy
10	0.1	90%
20	0.01	99%
30	0.001	99.9%

Getting Started	History & Terms	Examples	Help	File formats
	SA	M/BAM		

- stores the result of mapping raw reads onto reference genomes
- SAM Sequence Alignment/Map
- BAM Binary Alignment/Map
- contain 2 sections:
 - header lines starts with '@' followed by a two-letter record type code
 - alignment data stored in 12 tab-delimited columns

```
@HD_VN+1_5_SO-coordinate
@SQ SN: ref LN:15072434
r001
     83
         ref 2012257
                      40.50M = 2011868
                                         -439 CAAAAAATTTTGAAAAAAAAAAAA
    163 ref 2011868
                      60 50M = 2012257
                                          439 GTGGAGACAGCGCCAAAACACCAC
r002
     83
        ref 13331006 60 50M = 13330604
                                         -452 CTAGCGCGCGCGCCCCGTGTTG
r003
r004 163 ref 13330604 60 50M = 13331006
                                          452 TGGAAATAGTTCAGTTTAAAGCAT
```

The SAM header

- contain vital metadata about the reference sequences, read and sample information, processing steps and comments
- line starts with '@' followed by a 2-letter code and tab-delimited KEY:VALUE pairs
- @SQ ref. sequence information: @SQ SN:rye LN:4000
- @RG read group/sample information: @RG ID:VB00023_L001 SM:celegans-01 PL:Illumina
- **@PG** information about the programs used to create the SAM/BAM files: **@PG ID:bwa**

The SAM alignment section

Column	Field	Description
1	QNAME	query name
2	FLAG	bitwise flag
3	RNAME	reference name
4	POS	position on the ref. sequence
5	MAPQ	mapping quality
6	CIGAR	format for describing the alignment
7	RNEXT	reference name of the next read
8	PNEXT	position of the next read
9	TLEN	template length
10	SEQ	aligned sequence
11	QUAL	quality score of alignment
12	OPTIONAL	additional information

 \rightarrow http://samtools.sourceforge.net/SAMv1.pdf

Getting Started	History & Terms	Examples	Help	File formats
	CIGAF	STRINGS		

- encode which bases of an alignment are matches/mismatches (M), insertions (I), deletions (D), soft (S) or hard (H) clipped
- soft clipping \rightarrow only part of the query sequence is aligned to the reference
- hard clipping \rightarrow similar to soft clipping, but regions without match are not present in the sequence stored in the SAM file

```
76M
76 base pairs matched without INDEL's to the reference
43S6M1I26M
43S -- 43 bases soft clipped
6M -- 6 matched bases (mismatch/match)
1I -- 1 base pair insertion to the reference
26M -- 26 matched bases
```

The VCF format

- Variant Call Format \rightarrow standardized text file format for representing SNP, indel, and structural variation calls
- two main parts: the header, and the variant call records
- **header** \rightarrow describes dataset, reference, and defines the annotations used to qualify and quantify the variants
- data lines \rightarrow each line represent a single variant

VCF file header information

```
##fileformat=VCFv4.1
##FILTER=<ID=LowQual, Description="Low quality">
##FILTER=<ID=LowQual, Description="Low quality">
##FORMAT=<ID=AD, Number=., Type=Integer, Description="Allelic depths for the ref">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=FA, Number=., Type=Integer, Description="Total Depth">
##FORMAT=<ID=FA, Number=., Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT, Number=., Type=Integer, Description="Total Depth">
##FORMAT=<ID=FA, Number=., Type=Integer, Description="Allele Frequency">
##FORMAT=<ID=FA, Number=., Type=Float, Description="Allele Frequency">
##FORMAT=<ID=FA, Number=., Type=String, Description="Allele Frequency">
##FORMAT=<ID=FA, Number=., Type=String, Description="Genotype">
##FORMAT=<ID=FA, Number=., Type=String, Description="Genotype">
##FORMAT=<ID=GT, Number=., Type=String, Description="Genotype">
```

- 1^{st} line \rightarrow VCF specification version
- filter lines ightarrow tell what filter have been applied
- FORMAT and INFO lines \rightarrow define the annotations contained in the FORMAT and INFO columns of the VCF file

Variant call records

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT P1 P2 chr1 10043 rs2 T G . REJECT . GT:AD:DP:FA 0:17,2:8:0.105 0/1:4,0:4:0.00 chr1 10079 rs3 T G 47 PASS SOMATIC GT:AD:DP:FA 0:18,5:10:0.217 0/1:4,0:4:0.00 chr1 10157 . T C 29 PASS SOMATIC GT:AD:DP:FA 0:8,0:6:0.00 0/1:5,2:7:0.286

- each site record is structured into columns
- the first 7 columns are mandatory and represent the properties observed at the level of the variant site
- 8^{th} column (INFO) \rightarrow site-level annotations
- 9th column (FORMAT) \rightarrow sample-level annotation
- 10^{th} column \rightarrow sample-name columns
- $" \rightarrow$ serve as a placeholder

#CHROM POS ID REFALT QUAL FILTER INFO FORMAT P1 P2 chr1 10157 . T C 29 PASS . GT:AD:DP:FA 0:8,0:6:0.00 0/1:5,2:7:0.286

• GT \rightarrow genotype (0= REF allele, 1= 1st ALT allele, 2= 2nd ALT allele)

 $0/0-\mathsf{sample}$ is homozygous reference, 0/1 sample is heterozygous

- AD \rightarrow allele depth, number of reads that support each of the reported allele
- $\mathsf{DP} \to \mathsf{filtered}$ depth, number of filtered reads that support each of the reported allele

http://gatkforums.broadinstitute.org/wdl/discussion/1268/what-is-a-vcf-and-how-should-i-interpret-it

Getting Started	History & Terms	Examples	Help	File formats
	Su	immary		

- **FASTA** text-based format for representing either DNA- or AA-sequences together with their names
- **FASTQ** text-based format for storing both a biological sequence and its corresponding quality scores
- **SAM/BAM** is a generic alignment format for storing read alignments against reference
- VCF text file used for storing gene sequence variations